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Frattali ed altro … 
Di Loris Mannucci 

 

Con quest’articolo mi propongo di fare un’introduzione ai frattali e di dare una rappresentazione di come essi rappresentino un 

valido strumento per la descrizione della natura. Il percorso segue le tappe di un normale curricolo scolastico che ha stimolato 

la curiosità e indotto riflessioni su questo argomento. Nello studio di modelli matematici della realtà tramite con le successioni 

si presentano quasi all’improvviso situazioni caotiche pur derivando da leggi deterministiche talvolta anche molto semplici. 

Nell’affrontare quest’argomento voglio attenermi, si parva licet componere magnis
1
, alla convinzione di Feymann, per cui 

nessuna esposizione non matematica “potrà mai far capire la natura a ‘quelli’ dell’altra cultura”. Quindi chiedo fin d’ora scusa a 

tutti se non riuscirò a perseguire questo difficile obiettivo, spero però che possa almeno stimolare un po’ di curiosità e 

d’interesse.  

 

INSIEMI FRATTALI 
 

1) Modelli d’accrescimento 
 

Il primo incontro, che abbiamo con la matematica, è quello di contare 1, 2, 3, 4, .. ossia conoscere i “numeri naturali”
2
. 

Riscopriamo le caratteristiche (proprietà) di questo “insieme”; la prima
3
: è possibile confrontare i suoi elementi e stabilire fra 

due diversi quale sia il minore e il maggiore. Questo ci permette di scoprire che vi è un numero, lo zero 0, che è il più piccolo di 

tutti. Procedendo nella nostra esplorazione: ogni elemento ha un immediato successivo ( il numero che viene subito dopo quello 

considerato: 0 ha come successivo immediato 1; 1 ha 2, 2 ha 3,  , 10 ha 11,  ) ed ogni numero (eccetto lo 0) è il successivo 

immediato di un altro ( 1 è il successivo immediato di 0, 2 di 1, 3 di 2). Inoltre partendo da 0 attraverso il passaggio 

all’elemento successivo immediato si può raggiungere ogni elemento di N con un numero finito di passaggi: 0, suc(0)=1, 

suc(1)= suc(suc(0))= 2, suc(2)=suc(suc(suc(0)))=3 .. suc(n)=suc(suc(  suc(0)..))=n+1. E’ come percorrere la nostra genealogia 

partendo da Adamo per arrivare di padre in padre fino al nostro, quindi a noi, poi a nostro figlio e a nostro nipote e via 

seguendo, anche se a differenza degli uomini i numeri naturali hanno un solo discendente. Naturalmente vale anche la relazione 

inversa preso un qualsiasi numero si può con il precedente immediato arrivare fino allo zero; da nostro nipote considerando la 

relazione ‘figlio di’ ripetutamente si giunge ad Adamo. Queste proprietà si trasmettono a tutti i naturali.  

Allarghiamo il nostro orizzonte, a partire dall’insieme N possiamo introdurre in un dato insieme T un’applicazione di N in T, 

chiamata successione a valori in T, che ad ogni naturale associa un elemento di T. Ecco alcuni esempi: a 0 corrisponde 0,  

21 , 42 , 63 , .., nn 2 , .. all’ insieme N si associa l’insieme dei numeri pari P; un’altra: 10 , 31 , 

52 , .., 12  nn , .all’insieme N si associa l’insieme dei numeri dispari D … Studieremo alcuni esempi di successioni 

che permettono di descrivere lo studio dell’accrescimento di una popolazione biologica (persone, muffe, batteri o altro ancora) 

considerando diversi modelli di rappresentazione della realtà.  

I modelli studiati prevedono che la popolazione abbia un numero iniziale di soggetti, che indicheremo con 0a , dove il 

“numerino” ai piedi (pedice) dell’elemento a  rappresenta il numero d’ordine della successione. Ecco un esempio: se un 

allevatore inizia la sua attività con 5 coppie di conigli, la “popolazione iniziale” sarà uguale a 10, che, in questa notazione, è 

indicata con 100 a . 

 

Risorse illimitate 
Nel primo modello di crescita l’aumento della popolazione è, in ogni periodo, proporzionale al numero di individui presenti 

all’inizio del ciclo. Indicheremo questo coefficiente di proporzionalità con k , che indica l’eccedenza dei nati sui morti. 

Indicando con na  il numero dei soggetti presenti all’inizio del periodo n, con 1na quello alla fine, possiamo esprimere 

questo come somma del valore iniziale na  e dell’incremento nka , in formula:   nnnn akkaaa  11 . 

Se 0a  è il numero d’individui presenti al tempo iniziale, la popolazione dopo il primo ciclo è 001 kaaa  ; dopo il 

secondo     0

2

0000112 1 akkaakkaakaaa    e via di seguito fino al passo n-esimo, che diviene 

  01 aka
n

n  . 

                                                 
1
 (Virgilio, Georgiche, IV, 176). 

2
 L’insieme dei numeri naturali N= 0, 1, 2, 3, 4, 5, 6 … 

3
 L’ordine di elencazione è casuale introdotto per evidenziare le proprietà 

 

http://it.wikipedia.org/wiki/Publio_Virgilio_Marone
http://it.wikipedia.org/wiki/Georgiche
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Ponendo k1 , la successione diviene 0aa n

n  e presenta tre diversi comportamenti secondo il valore di   

0 1  ; decrescente, ossia la popolazione è destinata all’estinzione. 

1  ; costante, la popolazione è stazionaria 

1  : crescente, la popolazione è destinata a crescere geometricamente (accrescimento geometrico) 

 

Quando un solo individuo si suddivide in due simili che, a loro volta, sono in grado di riprodursi nello stesso modo si ha una 

crescita geometrica con 2 . Nell’ipotesi di risorse disponibili (cibo e spazio), è quella del batterio, Escherìchia Coli, che si 

scinde in due dopo circa mezz’ora. Rappresentiamo la popolazione al passare del tempo: 

Tempo in 

mezz’ore 
0 1 2 3 4 .. 10 11 .. 

Numero 

individui 
1=2

0
 2=2

1
 4=2

2
 8=2

3
 16=2

4
 .. 1024=2

10
 2048=2

11
 .. 

nella prima riga indichiamo il tempo trascorso, in mezz’ore; nella seconda la popolazione. La crescita avviene per potenze di 2, 

perché, a partire dal primo, si ottiene il successivo raddoppiando il termine precedente; così dopo 12 ore avremo 2
24

 individui 

ossia 2
10

*2
10

*2
4
 = 1024*1024*16, più di 16 milioni d’individui (16.777.216 per l’esattezza). 

 

Questo primo modello non può rappresentare tutta la realtà, perché non considera le risorse necessarie all’accrescimento, che in 

questo caso, sono considerate illimitate. 

Se l’ambiente, dove vive questa popolazione, offre una quantità di cibo sufficiente per b individui, l’incremento periodico sarà 

proporzionale non alla popolazione presente, ma alla quantità di risorse rimaste disponibili. Nella notazione consueta questo 

modello assume la formula seguente:  nnn abkaa 1  

Infatti, la popolazione alla fine di ogni ciclo è uguale a quella iniziale na  aumentata di k volte non della popolazione iniziale

na  (modello precedente) ma di quella che può vivere con le risorse rimaste disponibili  nab . 

Questa successione al crescere di n (numero dei cicli) tende a raggiungere il valore “limite” b, la popolazione che può vivere 

con quelle risorse. Lo sviluppo delle ninfee in un laghetto è un esempio di questa crescita: il valore limite b è raggiunto quando 

le ninfee hanno occupato tutta la superficie del laghetto. Quando il loro numero è “uguale” al quoziente fra l’area della 

superficie del laghetto e quella delle singole ninfee, considerata uguale per tutte. Dal loro numero all’inizio dell’osservazione 

l’accrescimento sarà proporzionale non al numero iniziale ma alle risorse rimaste disponibili (nel nostro caso la superficie del 

laghetto rimasta libera) cioè  nab . Cerchiamo di esprimere anche in questo caso la formula generale. Posto nn abx  , 

le risorse rimaste disponibili, la formula diviene nnn kxxbxb  1 , che permette di trovare l’espressione del termine 

generale delle risorse disponibili   nn xkx  11  ossia  nn kxx  10  e quello generale della successione 

  nn kabba  10 . 

Scegliendo la massima popolazione consentita b, come unità di misura, ( milioni o miliardi d’individui, non il singolo individuo 

che è rappresentato dal reciproco di b) la formula ricorsiva assume la forma: )1(1 nnn akaa  . 

È interessante confrontare i due modelli di crescita a parità di popolazione iniziale e di k  tasso di crescita. 

 

2) I numeri di Fibonacci
4
 

Nell’ipotesi di avere risorse illimitate, il modello di crescita illustrato nel paragrafo precedente non può descrivere situazioni 

dove occorre un certo tempo perché un individuo, appena nato, diventi ‘adulto’ e, quindi, possa a sua volta procreare. La 

crescita è così rallentata in attesa che alcuni individui diventino adulti. Il modello che proponiamo risolve questo bizzarro
5
 e 

antico dilemma: quanti saranno alla fine dell’anno i conigli, nati da un'unica coppia appena nata, se nessuno muore e se 

ciascuna coppia genera, a partire dall’età di due mesi, ogni mese un’altra coppia? 

Ecco una rappresentazione grafica: procedendo dall’alto in basso nell’albero genealogico della famiglia dei conigli il passaggio  

da una riga all’altra misura il tempo trascorso, in questo caso un mese. Inizio, tempo zero (t=0): una coppia appena nata; un 

mese dopo, t=1: ancora una sola coppia di un mese; due mesi dopo, t=2, ancora una sola coppia che, però è divenuta fertile; t=3, 

tre mesi dopo, una coppia fertile e una coppia appena nata, t=4, quattro mesi dopo, una coppia fertile e una coppia appena nata, 

                                                 
4
 Leonardo Fibonacci, pisano, vissuto tra il 12° e il 13° secolo, con la sua famosa opera Liber abbaci diffuse in occidente idee e 

procedimenti dell’ambiente arabo e bizantino (tra cui, in particolare, la numerazione posizionale) Diede così un contributo 

fondamentale alla rinascita delle scienze esatte in Europa. La successione che porta il suo nome fu da lui introdotta per risolvere 

il problema illustrato nel paragrafo. 
5
Pur non essendo esperti d’allevamento di conigli, possiamo affermare che la situazione esposta non è certamente reale 
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una coppia di un mese; t=5,cinque mesi dopo, due coppie fertili (coppia iniziale e coppia divenuta fertile) e due coppie appena 

nate (una della coppia iniziale l’altra della coppia divenuta fertile), una coppia di un mese. 

 
Traduciamo questa situazione esprimendola in termini di una  successione: 1, 1, 2, 3, 5, 8, 13, .. che per coerenza potremo far 

partire da 0 (nessuna coppia di conigli) ed formalizzarla nei termini consueti: 00 a ; 11 a ; 12 a ; 23 a ; 34 a ; 

55 a
; 

86 a
, …,    

Definiti i primi due 00 a , 11 a  ricaviamo la regola che genera il successivo dai due che lo precedono nnn aaa   12  

(F1) . Così posto n=0 si ha 101012  aaa ; n=1 211123  aaa ; n=2 312234  aaa , .. 

Questa successione risponde anche ad un altro problema: quanti sono i cammini che raggiungono un certo nodo in un sistema di 

strade a senso unico rappresentato dal grafo sottostante. Il senso unico va da sinistra a destra e con nodi in ordine crescente. 

 
Partendo dal nodo 0 in quanti modi diversi si può raggiungerne un altro: nodo 1, un solo percorso attraverso i nodi 0-1; nodo 2, 

un solo percorso 0-1-2; nodo 3, 2 percorsi: 0-1-3; 0-1-2-3; nodo 4, 3 percorsi 0-1-2-4, 0-1-3-4, 0-1-2-3-4; e via dicendo …  

In analogia ai procedimenti precedenti vogliamo verificare se è possibile esprimere la successione di Fibonacci con un termine 

generale, che permetta di conoscere un termine qualsiasi. Di seguito forniamo la traccia e il parziale sviluppo del calcolo che 

porta al termine generale. Per la comprensione di questo articolo questa dimostrazione può essere saltata e la lettura ripresa ai 

commenti della formula generale. 

Cominciamo col chiederci se può esistere una successione di potenze che soddisfi alla relazione (F1): poniamo dunque 
n

n xa   e sostituiamo i termini na  in (F1) ottenendo:  
nnn xxx   12

 che dividiamo membro a membro per 
nx  

ottenendo l’equazione di secondo grado 012  xx ,  le cui soluzioni hanno per somma 1 e per prodotto -1, ossia sono 

l’una l’antireciproca dell’altra.  
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Queste sono: 
2

51
 , 

2

51
 . Dunque, sono due successioni di potenze 

n  e 
n , che soddisfano la (F1); 

tuttavia nessuna delle due soddisfa le condizioni iniziali: infatti è 1,1,1,1 00   . Sembra a questo punto di 

non poter raggiungere il nostro obiettivo, ma abbiamo veramente trovato tutte le successioni che soddisfano la relazione (F1)? 

Partiamo da due importanti considerazioni: 

I) se na  è una successione che soddisfa la (F1) e se A è una costante, anche la successione naA  soddisfa la (F1). Infatti, dalla 

relazione nnn aaa   12 moltiplicando membro a membro per A si ottiene nnn aaa AAA 12    

II) Se na  e nb  sono due successioni che soddisfano la (F1) e se A e B sono costanti, anche le successione 

nnn aaa AAA 12    e , analogamente nnn bbb BBB 12    sommate membro a membro soddisfano la (F1): 

)BA()BA(BA 1122 nnnnnn bababa    e questa relazione non è altro che la (F1) scritta per la successione 

n BA n  . Possiamo allora esser certi che tutte le soluzioni tipo 
n BA n  (F2) soddisfano la (F1). Resta da determinare 

le costanti A e B in modo da soddisfare le condizioni iniziali. Assegnando agli esponenti i valori n=0 e n=1, otteniamo le 

seguenti condizioni 









1BA

0BA


 

Questo è un sistema lineare in due equazioni e due incognite (A e B), con determinante uguale a   , quindi diverso da 

zero. Esso ha come soluzione: 
5

1-
 B,

5

1
A  . Con questi valori di A e di B, la successione (F2) coincide con quella di 

Fibonacci e si ha  
nn

na












 














 


2

51

5

1

2

51

5

1
(F2) 

Notiamo che si ha 1
2

51



 , mentre 0

2

51



  è negativo ed ha valore assoluto minore di 1. Il secondo 

termine della (F2) è in ogni caso inferiore ad 
2

1  in valore assoluto, e diventa rapidamente molto piccolo. Perciò l’n-simo 

numero di Fibonacci è dato dall’intero che è più vicino al numero 

n













 

2

51

5

1
. 

3) Accrescimento logistico  

Introduciamo un nuovo modello, che incorpora le caratteristiche dei primi due descritti al punto1), in cui l’accrescimento è 

proporzionale alla popolazione presente all’inizio del nuovo ciclo, ma il fattore di crescita non è fisso  k1  , come  nel  

primo, ma proporzionale alle risorse rimaste disponibili  nab come nel secondo; in formule: nnn aaa )1(1   . Il 

fattore  na1  (che riassume in sé ciò che può frenare o regolare la crescita della popolazione come mancanza di cibo, 

condizioni climatiche meno favorevoli,… è chiamato fattore di retroazione.) rappresenta le risorse non ancora sfruttate dove, 

come di consueto, il valore 1 esprime la popolazione limite in una particolare unità di misura, mentre   rappresenta il 

coefficiente di crescita. Questa formula non è lineare come le precedenti, ma l’accrescimento viene a dipendere anche dal 

quadrato del termine precedente 
2

1 )1( nnnnn aaaaa    (F3). 

In termini strettamente matematici questo è un esempio d’equazione alle differenze finite non lineare, relativa al cosiddetto 

“accrescimento logistico” di una popolazione. Dal momento che una successione è una particolare funzione possiamo scrivere 

la formula, che calcola il termine successivo a partire dal precedente, nella notazione consueta delle funzioni.  

Procediamo nella trasformazione: 1na  è il termine successivo na , che, nella notazione delle funzioni, è l’immagine di na  

cioè )(1 nn afa  . Esprimendo la funzione f  con la consueta notazione xan  , )(1 xfan  , si ottiene dalla (F3): 

 xxxf  1)(  , che ha come grafico nel piano cartesiano la parabola xxy )1(   . La sua rappresentazione grafica, 

 , interseca l’asse delle ascisse in 0 ed in 1 ed ha il vertice di coordinate 
2

1
x   e 

4
y


 , 









4
;

2

1
V


. Dunque scelto un 
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valore  , rappresentiamo  , grafico della parabola )(xfy  , che ad ogni valore dell’ascissa x associa l’ordinata )(xf ; 

nel linguaggio delle successioni, dato il termine na (ascissa) otteniamo il successivo 1na (ordinata). Dal valore iniziale della 

successione 0a , rappresentato sull’asse delle ascisse con il punto  0;P 00 a  si ottiene il successivo 1a , )( 01 afa  , che è 

l’ordinata del punto  )(;P 001 afa  di  . Il segmento 10PP , parallelo all’asse delle y , rappresenta il passaggio da 0a  ad 1a

, dove il primo termine è l’ascissa del primo estremo 0P , il secondo l’ordinata del secondo estremo 1P . Per trovare 2a  

dovremmo riportare il termine 1a  sull’asse delle ascisse e tracciare la parallela all’asse delle ordinate fino ad intersecare , in 

 )(;P 112 afa  , ottenendo così il valore )( 12 afa  . Possiamo risolvere graficamente questo calcolo, usando, nel piano 

cartesiano, la bisettrice del I quadrante, e tracciare dal punto  )(;P 001 afa , un segmento, sulla parallela all’asse delle ascisse, 

fino ad incontrare la bisettrice in un punto  )();(P 00

'

1 afaf , o equivalente  11

'

1 ;P aa , da questo un altro segmento, sulla 

parallela all’asse delle ordinate, fino ad incontrare la parabola in  )(;P 112 afa  e così via per gli altri punti. 

 
Quindi a partire dal primo termine si genera una spezzata che fornisce una rappresentazione grafica della successione e 

permette di “vedere” il suo comportamento: n

'

1-n3

'

22

'

0 PPPPPPPP
11

 . 

Otteniamo diversi comportamenti secondo i valori di  . Le ascisse dei punti d’incontro della parabola con la bisettrice si 

ottengono dalla soluzione dell’equazione   xxx 1  e sono 0x  e 


1
1x : 

se 10    non vi sono altri punti d’intersezione della parabola con la bisettrice diversi dall’origine, per cui l’origine è un 

punto ‘attrattivo’ della successione, che converge a 0 per qualunque valore iniziale nell’intervallo [0; 1]. Infatti Il coefficiente 

angolare della retta tangente alla parabola    00

' 21 xxfp    (   00 22 xbaxp ) si mantiene nell’origine 

minore di 1, essendo    0'fp . Questo ci assicura che 
111 )()(
  nnnnnn aakafafaa , con 0<k<1 e 
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quindi la successione converge a zero. Vediamo per quali valori 






















 2

1
12

1
1'f  è in modulo 

minore di 1, 121   , quindi per 31     la successione convergerà a 


1
1 , ossia ad un unico valore. 

 

  

  
 

Nel secondo grafico, dove 1 , la parabola interseca la bisettrice in due punti: l’origine O, che, come affermato sopra, è un 

punto repulsivo e l’altro, invece, attrattivo verso al quale la popolazione tende a stabilizzarsi. Aumentando il valore di   

(quarto grafico) l’intersezione con la bisettrice è in un punto, in cui la parabola è discendente, quindi è attrattivo perché la 

“pendenza” della retta tangente alla parabola in questo punto è, come sopra calcolato, in modulo minore di 1. 

Quando questa “pendenza” diviene in modulo maggiore di 1 la successione continua ad assumere valori nell’intervallo [0,1], 

poiché il massimo della parabola è minore di 1. Questo accade quando 43    la successione non tende al consueto punto 

d’incontro, che diviene repulsivo, ma ha strani ‘comportamenti’ e il suo comportamento diviene difficilmente prevedibile. Nei 

grafici sottostanti diamo una rappresentazione grafica di alcuni comportamenti per le prime 10 iterazioni.  
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Analizziamone i grafici precedenti per i differenti valori di  :  

1.3  dopo poche iterazioni iniziali i termini della successione saltano tra 2 valori uno a sinistra e l’altro a destra del punto 

di incontro tra retta e parabola; 

5.3  i termini saltano tra quattro differenti valori: 2 a sinistra e 2 a destra del punto d’incontro;  

90.3,85.3,84.3,83.3  i termini della successione “ballano” fra differenti valori che si “stabilizzano” dopo un 

certo numero di iterazioni come viene spiegato successivamente. 

Possiamo riassumere tutti questi risultati con un grafico ottenuto con i valori “asintotici” della successione, posti in ordinata, 

corrispondenti al variare di  , posto in ascissa. La rappresentazione grafica è ottenuta associando ad ogni  , i valori assunti 

dalla successione dopo 400 iterazioni, quando essi sono stabilizzati su termini definiti, che subiscono variazioni minime nelle 

iterazioni successive e che non sono più separabili nella rappresentazione grafica adottata.  
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Questo è ingrandimento della figura precedente per i valori di   tra 3 e 4. Possiamo notare come, dopo la biforcazione, la 

figura si sdoppia in due figure che si intersecano, dove ciascuna riproduce la figura complessiva ottenuta con una 

trasformazione costituita anche da un cambiamento di scala. Le figure definite a loro volta riproducono la figura complessiva  

ottenuta con un’altra trasformazione della stesso tipo e così continuando   
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Anche in questo ingrandimento possiamo individuare “localmente” figure della biforcazione, che riproducono la figura 

complessiva dopo una trasformazione composta anche di un cambiamento di scala. Anche in questo caso le figure individuate 

richiamano a loro volta la “forma” della figura complessiva. 
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Il grafici riassumono in modo evidente il comportamento della successione al variare di  : 

10    la successione converge a 0 

31    converge al valore 


1
1x  intersezione fra la parabola e la bisettrice 

43    la linea si biforca la successione oscilla fra due valori. Ciascuna delle linee così ottenute si biforcano di nuovo e la 

successione oscilla tra quattro valori, poi tra 8 e così via, per poi ricominciare da meno valori (zona più chiara) fino a 

successivamente aumentare nuovamente. Notiamo come la prima biforcazione e poi quelle successive presentino localmente 

figure che riproducono con cambiamento di scala quella intera e generino al proprio interno figure ridotte in scala della stessa. 

Questa proprietà detta auto similarità è propria dei frattali e sarà ben definita successivamente dopo la presentazione di altri 

esempi. 

 

Prossimi argomenti: 
Figure Strane 
Chaos Game 
Successioni in campo complesso 
Sezione Aurea 
Tassellatura Penrose 
L-System 


