Frattali ed altro ...
Di Loris Mannucci

Con quest’articolo mi propongo di fare un’introduzione ai frattali e di dare una rappresentazione di come essi rappresentino un
valido strumento per la descrizione della natura. 1l percorso segue le tappe di un normale curricolo scolastico che ha stimolato
la curiosita e indotto riflessioni su questo argomento. Nello studio di modelli matematici della realta tramite con le successioni
si presentano quasi all’improvviso Situazioni caotiche pur derivando da leggi deterministiche talvolta anche molto semplici.
Nell’affrontare quest’argomento voglio attenermi, si parva licet componere magnis®, alla convinzione di Feymann, per cui
nessuna esposizione non matematica “potra mai far capire la natura a ‘quelli’ dell’altra cultura”. Quindi chiedo fin d’ora scusa a
tutti se non riuscird a perseguire questo difficile obiettivo, spero perd che possa almeno stimolare un po’ di curiosita e
d’interesse.

INSIEMI FRATTALI

1) Modelli d’accrescimento

Il primo incontro, che abbiamo con la matematica, & quello di contare 1, 2, 3, 4, .. ossia conoscere i “numeri naturali’.
Riscopriamo le caratteristiche (proprieta) di questo “insieme”; la prima®: & possibile confrontare i suoi elementi e stabilire fra
due diversi quale sia il minore e il maggiore. Questo ci permette di scoprire che vi & un numero, lo zero 0, che & il piu piccolo di
tutti. Procedendo nella nostra esplorazione: ogni elemento ha un immediato successivo ( il numero che viene subito dopo quello
considerato: 0 ha come successivo immediato 1; 1 ha 2, 2 ha 3, , 10 ha 11, ) ed ogni numero (eccetto lo 0) € il successivo
immediato di un altro ( 1 € il successivo immediato di 0, 2 di 1, 3 di 2). Inoltre partendo da O attraverso il passaggio
all’elemento successivo immediato si pud raggiungere ogni elemento di N con un numero finito di passaggi: 0, suc(0)=1,
suc(1)= suc(suc(0))= 2, suc(2)=suc(suc(suc(0)))=3 .. suc(n)=suc(suc( suc(0)..))=n+1. E’ come percorrere la nostra genealogia
partendo da Adamo per arrivare di padre in padre fino al nostro, quindi a noi, poi a nostro figlio e a nostro nipote e via
seguendo, anche se a differenza degli uomini i numeri naturali hanno un solo discendente. Naturalmente vale anche la relazione
inversa preso un qualsiasi numero si puo con il precedente immediato arrivare fino allo zero; da nostro nipote considerando la
relazione “figlio di’ ripetutamente si giunge ad Adamo. Queste proprieta si trasmettono a tutti i naturali.

Allarghiamo il nostro orizzonte, a partire dall’insieme N possiamo introdurre in un dato insieme T un’applicazione di N in T,
chiamata successione a valori in T, che ad ogni naturale associa un elemento di T. Ecco alcuni esempi: a 0 corrisponde 0,
152,254, 3—56,., n—>2n, .. all’ insieme N si associa I’insieme dei numeri pari P; un’altra: 0—-1, 13,

2—5,.., n—>2n+1, all’insieme N si associa 1’insieme dei numeri dispari D ... Studieremo alcuni esempi di successioni
che permettono di descrivere lo studio dell’accrescimento di una popolazione biologica (persone, muffe, batteri o altro ancora)
considerando diversi modelli di rappresentazione della realta.

I modelli studiati prevedono che la popolazione abbia un numero iniziale di soggetti, che indicheremo con @, dove il

“numerino” ai piedi (pedice) dell’elemento @ rappresenta il numero d’ordine della successione. Ecco un esempio: se un
allevatore inizia la sua attivita con 5 coppie di conigli, la “popolazione iniziale” sara uguale a 10, che, in questa notazione, &
indicata con a, =10.

Risorse illimitate
Nel primo modello di crescita I’aumento della popolazione &, in ogni periodo, proporzionale al numero di individui presenti

all’inizio del ciclo. Indicheremo questo coefficiente di proporzionalita con K, che indica I’eccedenza dei nati sui morti.
Indicando con @,, il numero dei soggetti presenti all’inizio del periodo n, con &, quello alla fine, possiamo esprimere
questo come somma del valore iniziale @, e dellincremento K&, , in formula: a,,, = a, +ka, = @+k)a,.

Se Ay & il numero d’individui presenti al tempo iniziale, la popolazione dopo il primo ciclo & a, =q, +ka0; dopo il
secondo @, =a, +ka, =a, +ka, +k(a, +ka,)=(1+k)a, e via di seguito fino al passo n-esimo, che diviene
a, =(1+k)a,.

! (Virgilio, Georgiche, 1V, 176).
2 L’insieme dei numeri naturali N= 0,1,2,3,4,5,6 ...
3 L’ordine di elencazione ¢ casuale introdotto per evidenziare le proprieta
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Ponendo A =1+K, la successione diviene @, = A", e presenta tre diversi comportamenti secondo il valore di A

0<1<L
/1:1;

A> 1: crescente, la popolazione € destinata a crescere geometricamente (accrescimento geometrico)

decrescente, ossia la popolazione ¢ destinata all’estinzione.

costante, la popolazione é stazionaria

Quando un solo individuo si suddivide in due simili che, a loro volta, sono in grado di riprodursi nello stesso modo si ha una
crescita geometrica con A = 2. Nell’ipotesi di risorse disponibili (cibo e spazio), & quella del batterio, Escherichia Coli, che si
scinde in due dopo circa mezz’ora. Rappresentiamo la popolazione al passare del tempo:

Tempo in 0 1 2 3 4 . 10 11
mezz ore
Numero. 1=2° 2=01 4=22 8=23 16=2* . 1024=2 | 2048=21
individui

nella prima riga indichiamo il tempo trascorso, in mezz’ore; nella seconda la popolazione. La crescita avviene per potenze di 2,
perché, a partire dal primo, si ottiene il successivo raddoppiando il termine precedente; cosi dopo 12 ore avremo 22* individui
ossia 219%210%2% = 1024*1024*16, piu di 16 milioni d’individui (16.777.216 per Iesattezza).

Questo primo modello non puo rappresentare tutta la realta, perché non considera le risorse necessarie all’accrescimento, che in
questo caso, sono considerate illimitate.

Se I’ambiente, dove vive questa popolazione, offre una quantita di cibo sufficiente per b individui, I’incremento periodico sara
proporzionale non alla popolazione presente, ma alla quantita di risorse rimaste disponibili. Nella notazione consueta questo

modello assume la formula seguente: @, =a, +k(b—a, )
Infatti, la popolazione alla fine di ogni ciclo € uguale a quella iniziale @, aumentata di k volte non della popolazione iniziale

a, (modello precedente) ma di quella che puo vivere con le risorse rimaste disponibili (b —a, )

Questa successione al crescere di n (numero dei cicli) tende a raggiungere il valore “limite” b, la popolazione che puo vivere
con quelle risorse. Lo sviluppo delle ninfee in un laghetto & un esempio di questa crescita: il valore limite b & raggiunto quando
le ninfee hanno occupato tutta la superficie del laghetto. Quando il loro numero & “uguale” al quoziente fra I’area della
superficie del laghetto e quella delle singole ninfee, considerata uguale per tutte. Dal loro numero all’inizio dell’osservazione
I’accrescimento sara proporzionale non al numero iniziale ma alle risorse rimaste disponibili (nel nostro caso la superficie del

laghetto rimasta libera) cioe (b - an). Cerchiamo di esprimere anche in questo caso la formula generale. Posto X, =b—a,,

le risorse rimaste disponibili, la formula diviene b—X_,, =b—X_ +KkX,, che permette di trovare I’espressione del termine
generale delle risorse disponibili  X,,, = (1— k)Xn ossia X, =X, (1—k)n e quello generale della successione

a,=b—(b-a,)1-k)".

Scegliendo la massima popolazione consentita b, come unita di misura, ( milioni o miliardi d’individui, non il singolo individuo
che & rappresentato dal reciproco di b) la formula ricorsiva assume la forma: a,,, =a, +k(l—a,).

E interessante confrontare i due modelli di crescita a parita di popolazione iniziale e di k tasso di crescita.

2) | numeri di Fibonacci*

Nell’ipotesi di avere risorse illimitate, il modello di crescita illustrato nel paragrafo precedente non pud descrivere situazioni
dove occorre un certo tempo perché un individuo, appena nato, diventi ‘adulto’ e, quindi, possa a sua volta procreare. La
crescita & cosi rallentata in attesa che alcuni individui diventino adulti. Il modello che proponiamo risolve questo bizzarro® e
antico dilemma: quanti saranno alla fine dell’anno i conigli, nati da un'unica coppia appena nata, se nessuno muore e se
ciascuna coppia genera, a partire dall’eta di due mesi, ogni mese un’altra coppia?

Ecco una rappresentazione grafica: procedendo dall’alto in basso nell’albero genealogico della famiglia dei conigli il passaggio
da una riga all’altra misura il tempo trascorso, in questo caso un mese. Inizio, tempo zero (t=0): una coppia appena nata; un
mese dopo, t=1: ancora una sola coppia di un mese; due mesi dopo, t=2, ancora una sola coppia che, pero ¢ divenuta fertile; t=3,
tre mesi dopo, una coppia fertile e una coppia appena nata, t=4, quattro mesi dopo, una coppia fertile e una coppia appena nata,

* Leonardo Fibonacci, pisano, vissuto tra il 12° e il 13° secolo, con la sua famosa opera Liber abbaci diffuse in occidente idee e
procedimenti dell’ambiente arabo e bizantino (tra cui, in particolare, la numerazione posizionale) Diede cosi un contributo
fondamentale alla rinascita delle scienze esatte in Europa. La successione che porta il suo nome fu da lui introdotta per risolvere
il problema illustrato nel paragrafo.

*Pur non essendo esperti d’allevamento di conigli, possiamo affermare che la situazione esposta non ¢ certamente reale
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una coppia di un mese; t=5,cinque mesi dopo, due coppie fertili (coppia iniziale e coppia divenuta fertile) e due coppie appena
nate (una della coppia iniziale I’altra della coppia divenuta fertile), una coppia di un mese.

Bl

88 1
38 6o
3888 38 ;

3888883888

Traduciamo questa situazione esprimendola in termini di una successione: 1, 1, 2, 3, 5, 8, 13, .. che per coerenza potremo far
partire da O (nessuna coppia di conigli) ed formalizzarla nei termini consueti: a, = 0; a,=1;a,=1; a,= 2; a, = 3;
a; =5 a,=8

Definiti i primi due a, =0, &, =1 ricaviamo la regola che genera il successivo dai due che lo precedono a,,, =a,,; +a,

(F1).Cosiposton=0siha a, =a,+a, =1+0=1;n=1 a,=a,+a, =1+1=2;n=2 4, =a,+a, =2+1=3, ..

Questa successione risponde anche ad un altro problema: quanti sono i cammini che raggiungono un certo nodo in un sistema di
strade a senso unico rappresentato dal grafo sottostante. Il senso unico va da sinistra a destra e con nodi in ordine crescente.
2 4 6

L 2 L 2 -

Partendo dal nodo 0 in quanti modi diversi si pud raggiungerne un altro: nodo 1, un solo percorso attraverso i nodi 0-1; nodo 2,
un solo percorso 0-1-2; nodo 3, 2 percorsi: 0-1-3; 0-1-2-3; nodo 4, 3 percorsi 0-1-2-4, 0-1-3-4, 0-1-2-3-4; ¢ via dicendo ...

In analogia ai procedimenti precedenti vogliamo verificare se € possibile esprimere la successione di Fibonacci con un termine
generale, che permetta di conoscere un termine qualsiasi. Di seguito forniamo la traccia e il parziale sviluppo del calcolo che
porta al termine generale. Per la comprensione di questo articolo questa dimostrazione pu0 essere saltata e la lettura ripresa ai
commenti della formula generale.

Cominciamo col chiederci se pud esistere una successione di potenze che soddisfi alla relazione (F1): poniamo dunque

a, = X" e sostituiamo i termini @, in (F1) ottenendo: X""* = Xx"*' + X" che dividiamo membro a membro per X"

ottenendo 1’equazione di secondo grado x> —=x—1=0, le cui soluzioni hanno per somma 1 e per prodotto -1, ossia sono
’una I’antireciproca dell’altra.
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Queste sono: o = . Dunque, sono due successioni di potenze " e ", che soddisfano la (F1);

1++5 _1—v@
2 = 2

tuttavia nessuna delle due soddisfa le condizioni iniziali: infatti ¢ &® =1, ﬂo =1L a#1 [ #1. Sembra a questo punto di

non poter raggiungere il nostro obiettivo, ma abbiamo veramente trovato tutte le successioni che soddisfano la relazione (F1)?
Partiamo da due importanti considerazioni:

I) se @, & una successione che soddisfa la (F1) e se A & una costante, anche la successione Aa,, soddisfa la (F1). Infatti, dalla

relazione @, ,, = a,,, +a, moltiplicando membro a membro per A si ottiene Aa, ., = Aa,,, +Aa,

n+1

I) Se a, e b, sono due successioni che soddisfano la (F1) e se A e B sono costanti, anche le successione
Aa, , =Aa,, +Aa, e, analogamente Bb , , =Bb
Aan+2 + an+2 = (Aa

Aca" +Bg". Possiamo allora esser certi che tutte le soluzioni tipo Ac" + BA" (F2) soddisfano la (F1). Resta da determinare

le costanti A e B in modo da soddisfare le condizioni iniziali. Assegnando agli esponenti i valori n=0 e n=1, otteniamo le
seguenti condizioni

.1 + B, sommate membro a membro soddisfano la (F1):

v+ Bb,.)+(Aa, +Bb,) e questa relazione non ¢ altro che la (F1) scritta per la successione

A+B=0
oA+ fB=1
Questo & un sistema lineare in due equazioni e due incognite (A e B), con determinante uguale a f —«, quindi diverso da
1 -1
zero. Esso ha come soluzione: A = —, B=—=. Con questi valori di A e di B, la successione (F2) coincide con quella di

J5' b
Fibonacci e si ha

1(1+45) 1 (1-4BY

= | = ——|—=| (")

an
Js5l 2 Jsl 2
1+J§ 1—J§
2 2

Notiamo che si ha o =

>1, mentre =

<0 & negativo ed ha valore assoluto minore di 1. 1l secondo

termine della (F2) & in ogni caso inferiore ad % in valore assoluto, e diventa rapidamente molto piccolo. Percio 1’'n-simo

1(1++45)

numero di Fibonacci ¢ dato dall’intero che ¢ piu vicino al numero — .

N
3) Accrescimento logistico
Introduciamo un nuovo modello, che incorpora le caratteristiche dei primi due descritti al puntol), in cui I’accrescimento &

proporzionale alla popolazione presente all’inizio del nuovo ciclo, ma il fattore di crescita non é fisso (1+ k) , come nel

primo, ma proporzionale alle risorse rimaste disponibili (b —a., )come nel secondo; in formule: a,,, = A(1—a,)a, . Il

fattore (1— an) (che riassume in sé ci0 che puo frenare o regolare la crescita della popolazione come mancanza di cibo,

condizioni climatiche meno favorevoli,... € chiamato fattore di retroazione.) rappresenta le risorse non ancora sfruttate dove,
come di consueto, il valore 1 esprime la popolazione limite in una particolare unita di misura, mentre A rappresenta il
coefficiente di crescita. Questa formula non ¢ lineare come le precedenti, ma I’accrescimento viene a dipendere anche dal

. 2
quadrato del termine precedente @, , = A(1—a,)a, = Aa, —Aa; (F3).

In termini strettamente matematici questo & un esempio d’equazione alle differenze finite non lineare, relativa al cosiddetto
“accrescimento logistico” di una popolazione. Dal momento che una successione & una particolare funzione possiamo scrivere
la formula, che calcola il termine successivo a partire dal precedente, nella notazione consueta delle funzioni.

Procediamo nella trasformazione: @, ,, € il termine successivo a,, che, nella notazione delle funzioni, & I'immagine di @,

cioé a,,, = f(a,). Esprimendo la funzione f con la consueta notazione a, — X, a,,, — f(X), si ottiene dalla (F3):

n+1

f(x)= /1(1— X)X, che ha come grafico nel piano cartesiano la parabola Y = A(1— X)X . La sua rappresentazione grafica,
, L . _ o ) 1 A 14

@ , interseca I’asse delle ascisse in 0 ed in 1 ed ha il vertice di coordinate X = E ey= Z V _;Z . Dunque scelto un

2
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valore A, rappresentiamo @, grafico della parabola y = f(X), che ad ogni valore dell’ascissa x associa I’ordinata f (X);

nel linguaggio delle successioni, dato il termine @, (ascissa) otteniamo il successivo @, (ordinata). Dal valore iniziale della

n+1

successione @, , rappresentato sull’asse delle ascisse con il punto P, (aO;O) si ottiene il successivo a,, &, = f(a,), che e
’ordinata del punto Pl(ao; f (ao)) di @. Il segmento P P, , parallelo all’asse delle Y, rappresenta il passaggio da a, ad @,
, dove il primo termine ¢ D’ascissa del primo estremo P,, il secondo I’ordinata del secondo estremo P,. Per trovare a,
dovremmo riportare il termine @, sull’asse delle ascisse e tracciare la parallela all’asse delle ordinate fino ad intersecare D, in
P,(a,; f(a,)) , ottenendo cosi il valore @, = f(a,). Possiamo risolvere graficamente questo calcolo, usando, nel piano
cartesiano, la bisettrice del I quadrante, e tracciare dal punto Pl(ao; f (ao)), un segmento, sulla parallela all’asse delle ascisse,
fino ad incontrare la bisettrice in un punto P, (f (&,); f (a,)). o equivalente P,(a,;a, ), da questo un altro segmento, sulla

parallela all’asse delle ordinate, fino ad incontrare la parabola in P, (al; f (al)) e cosi via per gli altri punti.

E.:' | | | | | | |

d, A, a-

Quindi a partire dal primo termine si genera una spezzata che fornisce una rappresentazione grafica della successione e

permette di “vedere” il suo comportamento: P, P1 P1 P,P,P,--P.,P,.

Otteniamo diversi comportamenti secondo i valori di A . Le ascisse dei punti d’incontro della parabola con la bisettrice si

1
ottengono dalla soluzione dell’equazione ),(1— X)X =Xesono X=0e x= 1—; :

se 0< A <1 non vi sono altri punti d’intersezione della parabola con la bisettrice diversi dall’origine, per cui I’origine & un
punto ‘attrattivo’ della successione, che converge a 0 per qualunque valore iniziale nell’intervallo [0; 1]. Infatti Il coefficiente

angolare della retta tangente alla parabola p = f'(X,)= A(1—2X,) (p = 2ax, +b = 21X, + A ) si mantiene nell’origine

-a,|=|f(a,)- f(a,,)| <kla, —a, | cono<k<1e

minore di 1, essendo p =  (0)= A . Questo ci assicura che |a n71|

n+1
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, 1 1
quindi la successione converge a zero. Vediamo per quali valori f (1—;} =Z—2/1*(1—z)=2—/1 ¢ in modulo

. . - : 1
minoredi 1, —1<2—A <1, quindi per 1 < A <3 lasuccessione convergeraa 1— 7 ossia ad un unico valore.

1 — 1 —
2=08 A=15
0.8 T 087 i
067 T 0.6 T
0.4+ T 0.4+ +
027 T 027 T
0.2 04 0.6 0.8 1 0.2 04 0.6 0.8 1
1 —tt 1 i
A=15 2=2_80
08 + 0.8 / T
06+ 1 0.6 1
047 T 041 T
0.2+ £ 0.2 T
02 04 06 08 1 02 04 06 08 1

Nel secondo grafico, dove A >1, la parabola interseca la bisettrice in due punti: I’origine O, che, come affermato sopra, & un
punto repulsivo e I’altro, invece, attrattivo verso al quale la popolazione tende a stabilizzarsi. Aumentando il valore di A
(quarto grafico) I’intersezione con la bisettrice € in un punto, in cui la parabola & discendente, quindi & attrattivo perché la
“pendenza” della retta tangente alla parabola in questo punto €, come sopra calcolato, in modulo minore di 1.

Quando questa “pendenza” diviene in modulo maggiore di 1 la successione continua ad assumere valori nell’intervallo [0,1],
poiché il massimo della parabola & minore di 1. Questo accade quando 3< A <4 Ila successione non tende al consueto punto
d’incontro, che diviene repulsivo, ma ha strani ‘comportamenti’ € il suo comportamento diviene difficilmente prevedibile. Nei
grafici sottostanti diamo una rappresentazione grafica di alcuni comportamenti per le prime 10 iterazioni.
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A=3.5
0.8+
06+
0.4+
02+
02 04 06 08
1] } } t } } t } }
2=3.84
08+ \\v‘,..v,
06+ ‘
04+
0.2+
02 04 06 08




x| } } } } } } } } } I t t t t t t t t t
A=385 2=390
X
08+ 1 08+ \
06+ 1 06+
04+ | 1 04+
B2ty T 021
02 04 06 08 1 02 04 06 08

Analizziamone i grafici precedenti per i differenti valori di A :

A = 3.1 dopo poche iterazioni iniziali i termini della successione saltano tra 2 valori uno a sinistra e 1’altro a destra del punto
di incontro tra retta e parabola;

A = 3.5 i termini saltano tra quattro differenti valori: 2 a sinistra e 2 a destra del punto d’incontro;

A=3.83, 3.84, 3.85 3.90 i termini della successione “ballano” fra differenti valori che si “stabilizzano” dopo un

certo numero di iterazioni come viene spiegato successivamente.
Possiamo riassumere tutti questi risultati con un grafico ottenuto con i valori “asintotici” della successione, posti in ordinata,

corrispondenti al variare di A , posto in ascissa. La rappresentazione grafica & ottenuta associando ad ogni A , i valori assunti
dalla successione dopo 400 iterazioni, quando essi sono stabilizzati su termini definiti, che subiscono variazioni minime nelle

iterazioni successive e che non sono piu separabili nella rappresentazione grafica adottata.
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075+

0.25 1

T

3.25 3.5 3.75 =

4
=4
S
-t
=4

|
T T

_1_
y

&
B E
4=
4

Questo & ingrandimento della figura precedente per i valori di A tra 3 e 4. Possiamo notare come, dopo la biforcazione, la
figura si sdoppia in due figure che si intersecano, dove ciascuna riproduce la figura complessiva ottenuta con una
trasformazione costituita anche da un cambiamento di scala. Le figure definite a loro volta riproducono la figura complessiva
ottenuta con un’altra trasformazione della stesso tipo e cosi continuando
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0.75 A1

8 T

0.29 7

3.6 3.7 3.8 3.9 4

Anche in questo ingrandimento possiamo individuare “localmente” figure della biforcazione, che riproducono la figura
complessiva dopo una trasformazione composta anche di un cambiamento di scala. Anche in questo caso le figure individuate
richiamano a loro volta la “forma” della figura complessiva.
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0.75 ¢

-

0.25 1

] ] ] ] ] ] ] ] }

3.82 3.84 3.86 3.88 3.9

1 grafici riassumono in modo evidente il comportamento della successione al variare di A :
0 < A <1 lasuccessione converge a 0

1. . o
1< A < 3 converge al valore X =1—— intersezione fra la parabola e la bisettrice

3< A <4 lalinea si biforca la successione oscilla fra due valori. Ciascuna delle linee cosi ottenute si biforcano di nuovo e la
successione oscilla tra quattro valori, poi tra 8 e cosi via, per poi ricominciare da meno valori (zona piu chiara) fino a
successivamente aumentare nuovamente. Notiamo come la prima biforcazione e poi quelle successive presentino localmente
figure che riproducono con cambiamento di scala quella intera e generino al proprio interno figure ridotte in scala della stessa.
Questa proprieta detta auto similarita & propria dei frattali e sara ben definita successivamente dopo la presentazione di altri
esempi.

Prossimi argomenti:

Figure Strane

Chaos Game

Successioni in campo complesso
Sezione Aurea

Tassellatura Penrose

L-System
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