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MA PERCHÉ È COSÍ DIFFICILE 
INSEGNARE 

LE GEOMETRIE NON EUCLIDEE? 
 

di Antonino Drago [*] 
 

È	
  da	
  molti	
  anni	
  che	
  i	
  programmi	
  ministeriali	
  hanno	
  introdotto	
  
l’insegnamento	
  delle	
  geometrie	
  non	
  euclidee.	
  Ma,	
  a	
  mia	
  conoscen-­‐
za,	
  non	
  si	
  è	
  creata	
  alcuna	
  tradizione	
  tra	
  gli	
  insegnanti,	
  né	
  il	
  mon-­‐
do	
  accademico	
  si	
  è	
  sforzato	
  di	
  presentare	
  questa	
  didattica	
  in	
  ter-­‐
mini	
  facilmente	
  praticabili	
  nelle	
  scuole	
  secondarie.	
  Perché?	
  Nel	
  se-­‐
guito	
  cercherò	
  di	
  rispondere	
  andando	
  a	
  fondo	
  della	
  questione.	
  Per	
  
sinteticità	
  mi	
  esprimerò	
  per	
  rapidi	
  punti.	
  

1° Innanzitutto, notiamo un equivoco: fino al 1800 nessun 
geometra si fidava di trattare i punti all’infinito; tutti i geometri 
intendevano per retta un segmento sempre più estensibile, 
non una figura con i suoi punti estremi. Fu poi la geometria 
proiettiva (oltre che l’analisi infinitesimale) che rese familiari 
quei punti ai matematici. 

2° Fu Playfair (1793) a proporre l’assioma delle parallele 
nella forma attuale: “… esiste una ed una sola retta parallela 
alla data”: una dizione che presuppone che noi conosciamo la 
retta intera, compresi i suoi punti estremi. Invece Euclide, co-
me tutti i Greci antichi, voleva attenersi al finito e all’operativo 
di riga e compasso, perciò non ha mai scritto così; ma: se 
l’angolo d’incidenza di una trasversale alla perpendicolare alla 
retta data è minore di un retto, essa incontra questa retta; cio-
è la parallela è quella che non incontra la retta data perché 
non ha l’angolo minore di un retto. Questa proposizione non è 
un’affermazione su una possibilità reale; è un’illazione che de-
cide sugli sconosciuti punti all’infinito. Il confronto tra le propo-
sizioni di Euclide e di Playfair fa capire che la seconda è idea-
listica e che quindi tutta la geometria euclidea, che usa in ma-
niera essenziale una proposizione idealistica, è essenzial-
mente idealistica. Essa risulta tale anche dal confronto, che si 
è potuto fare un secolo dopo, con le altre geometrie non eucli-
dee: il raggio di curvatura del suo spazio è un estremo: infini-
to. Invece, la si presenta sempre secondo la tradizione che le 
attribuiva il massimo di operatività e costruibilità in matemati-
ca (tradizione nata perché i Greci, usando solo riga e com-
passo e le sole proporzioni, credettero di scampare al pericolo 
di incontrare i numeri irrazionali; ma scampati da Scilla della 
incommensurabilità, sono caduti in Cariddi della parallela es-
senzialmente idealistica). 

3° Le famose figure introduttive di Saccheri e di Lobacev-
skij sono sbagliate di concetto: il piano euclideo non può coin-
cidere con alcuna superficie non euclidea (si pensi alla super-
ficie sferica, quale rappresentazione della geometria ellittica). 
Ognuna di quelle figure al più può rappresentare la zona infi-
nitesima del piano tangente euclideo attorno ad un punto per 
cui passino i segmenti della parallela euclidea e di quelle non 
euclidee; ma appena si prolungassero questi vari segmenti in-
finitesimi in una regione finita, essi divergerebbero, oltre che 
sul piano euclideo, nello spazio; ad es. nella Fig. 1 la curva-
tura dello spazio ellittico costringe il segmento infinitesimo el-
littico, se prolungato, a uscire al di sotto del piano euclideo, 
mentre quello dello spazio iperbolico al di sopra. D’altronde, la 
figura è sbagliata all’origine: pone una retta base che, per co-
me è data, non può che essere euclidea; ma non c’è una retta 
euclidea che coincida con quelle non euclidee. Quindi ambe-
due quelle figure ostacolano la comprensione delle geometrie 

non euclidee sin dall’inizio; esse sono delle trappole per la in-
tuizione. Potevano essere giustificate nei primi scopritori, che 
dovettero arrampicarsi sugli specchi per intuire quella che era 
una novità assoluta; ma oggi sono devianti, così tanto che an-
che l’insegnante che volesse introdurre queste geometrie sul-
la base della storia dovrebbe spiegare agli studenti che quelle 
figure debbono essere viste opportunamente, secondo raggi 
di curvatura finiti; ma questa spiegazione toglierebbe tutto 
l’aiuto che di solito dà una figura all’intuizione (così come se 
volesse semplificare l’insegnamento dell’analisi infinitesimale 
introducendo i vecchi infinitesimi di Leibniz, dovrebbe inse-
gnarli con concetti matematici solo in termini finiti; ma ciò ri-
durrebbe molto il potere immaginifico di quel concetto). 
 

 
 

 
 

 

 
 

Figura 1 
 

4° Saccheri voleva liberare da ogni “neo” la geometria eu-
clidea dando la dimostrazione della verità dell’assioma delle 
parallele. Secoli di fallimenti di analoghi tentativi dimostrano 
(come nel caso del moto perpetuo) che è impossibile decidere 
la verità dell’assioma delle parallele (che, di fatto, riguarda i 
punti all’infinito) con i soli mezzi della geometria euclidea (riga 
e compasso). Questa esperienza negativa, di fatto, anticipò il 
teorema di Gödel. Lobacevskij e Bolyai passarono dal proble-
ma di decidere la verità di questo assioma ad affermare che 
esso è indipendente dai precedenti (per dirla secondo un at-
teggiamento assiomatico); e quindi cercarono altre geome-
trie, del tutto diverse. 
 

 
 

Fig. 2. Superficie di Beltrami a curvatura costante negativa 
 

5° Beltrami sconvolse le convinzioni radicate sulla vaghez-
za e inutilità della geometria iperbolica trovandone un modello 
nello spazio usuale (Fig. 2): la superficie di rotazione della 
trattrice.[1] Ma il modello valeva solo localmente (all’inizio esso 
ha una cuspide); inutilmente egli cercò di estendere il modello 
ad uno che valesse globalmente; Hilbert dimostrò che non era 
possibile. Si danno vari modelli anche per le geometrie ellitti-



che; il più usuale è un ellissoide. Ma Lindemann dimostrò che 
sono tutti locali.[2] Quindi anche le maniere visive più usuali di 
presentare le geometrie non euclidee sono devianti, senza 
che di solito lo si faccia notare; l’intuizione viene diretta su og-
getti geometrici parziali, che non fanno vedere tutta la realtà 
delle nuove geometrie. 

6° Alla scoperta delle nuove geometrie, rispose con entu-
siasmo G. Battaglini, che creò una rivista apposita (“Il giornale 
di Battaglini”). Lì, presentò una via rapida e didattica per intro-
durre la geometria iperbolica.[3] Trovò che in un triangolo con 
un lato prolungato all’infinito c’è proporzionalità tra seno e se-
no iperbolico, e tra tangente e tangente iperbolica. Ma Enri-
ques dimostrò che la deduzione di Battaglini era sbagliata, 
perché le relazioni tra i due tipi di funzione valgono nello spa-
zio, non sul piano.[4] In conclusione, sul piano euclideo non 
esistono maniere rigorose di introdurre le geometrie non eucli-
dee, neanche con funzioni speciali (Fig. 3).  
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Fig. 3. Per M e N → ∞, sinh MO / sinh NO = k sin mo / sin no,  ma non 
cosh MO / cosh NO = h cos mo /cos no. 
 

7° Le geometrie non euclidee sono state scoperte (non 
quando si sono studiate le superfici a raggio di curvatura fini-
to, come molti credono, ma) quando per la prima volta si è 
pensato lo spazio euclideo al di fuori di esso; ciò avvenne do-
po che la trigonometria divenne una teoria.[5] In effetti le for-
mule di trigonometria sferica cambiano con regolarità nelle 
varie geometrie, sulla base di due parametri: il raggio di cur-
vatura, finito o infinito; e l’argomento reale o immaginario. 
Proprio questa traducibilità delle formule nei casi euclideo ed 
iperbolico, diede a Lobacevskij la convinzione di essere nel 
giusto. Una didattica scolastica della trigonometria sferica da-
rebbe un fondamento formalmente corretto e sicuro allo stu-
dio delle geometrie non euclidee; ma purtroppo sembra poco 
proponibile per la complessità delle sue formule. 

8° La metrica di ogni geometria è diversa e in genere com-
plicata. Inoltre come selezionare tra le infinite metriche quelle 
più interessanti?  (Per di più quella di Minkowski, presentando 
un segno meno, è degenere; per tal motivo non viene di solito 
considerata dagli studi generali sulle geometrie non euclidee). 

9° Alla fine del secolo XIX sono sopraggiunte le interpreta-
zioni date dalle geometrie proiettiva ed affine; ma esse coin-
volgono a priori i punti all’infinito, trattati come infinito in atto. 
Sono quindi visioni metageometriche idealistiche, che ad es. 
non possono rappresentare l’aspetto operativo della Matema- 
tica. 

10° Ulteriormente (1872), il programma di Erlangen ha 
proposto di caratterizzare le geometrie mediante i gruppi di 
trasformazione. Ma, in Klein, è rimasto solo un programma. 
Proseguito da altri, si è allargato ad usare anche i gruppi to-
pologici. Alla fine la caratterizzazione ha dato un’ottantina di 
geometrie, dove è difficile riconoscere quelle più semplici e 
più intuitive.[6] Giustamente il Bourbaki afferma che (così) “la 
geometria è svanita”. [7] 

11° Poincaré ha trovato, con tre metodi diversi, che le più 
importanti geometrie sono quattro: la geometria euclidea, la 
ellittica, la iperbolica e quella che poi sarà la geometria di Min-
kowski; e non tre come aveva creduto di dimostrare Helm-
holtz, che imponeva l’assioma del libero movimento dei corpi 
rigidi (mentre invece la termodinamica non usa tali corpi).[8] Il 
metodo più semplice di Poincaré è quello di studiare le qua-
driche, studio che è abbordabile nella scuola. Si ottengono 
per le geometrie non euclidee: un ellissoide, un iperboloide a 
due falde e per l’ultima un iperboloide a una falda (che, come 

caso estremo, è la figura del cono-luce della relatività ristretta) 
(Fig. 4). 
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Fig. 4. Iperboloidi a due falde e a una falda 
 

12° Nel 1899 Hilbert ha formalizzato in maniera assiomati- 
ca la geometria euclidea e poi anche le altre geometrie: ogni 
geometria è semplicemente un sistema di assiomi. Certamen-
te questa è la maniera più semplice di affrontare le loro diver-
sità: cambiare qualche proposizione dell’assiomatica. Ma ogni 
insegnante sa che la ventina di assiomi di Hilbert per la fami-
liare geometria euclidea sono indigeribili anche agli studenti 
più dotati. Inoltre il tentativo di assiomatizzare ogni altra teoria 
matematica ha rivelato (teorema di Gödel del 1931) che l’as-
siomatica non è la sola maniera di considerare una teoria, è 
una maniera parziale (Beth, van Heijenoort, Hintikka). Quindi 
la scelta di insegnare un’assiomatica sarebbe non solo estre-
mamente riduttiva della ricchezza e della intuitività delle geo-
metrie, ma anche parzializzante. 
	
  [Segue	
  al	
  numero	
  185]	
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La vita è sogno 
   di Nevio Nigro 
 
La vita è sogno. 
Ma sembra bella 
anche la solitudine. 
E il silenzio. 

 

Non piango giovinezza. 
Ma sempre 
ovunque vado la ripenso. 

 
da: Nevio Nigro, Incontri, Milano, Crocetti, 2008 


