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MA PERCHE E COSI DIFFICILE
INSEGNARE
LE GEOMETRIE NON EUCLIDEE?

di Antonino Drago ™

E da molti anni che i programmi ministeriali hanno introdotto
l'insegnamento delle geometrie non euclidee. Ma, a mia conoscen-
za, non si é creata alcuna tradizione tra gli insegnanti, né il mon-
do accademico si é sforzato di presentare questa didattica in ter-
mini facilmente praticabili nelle scuole secondarie. Perché? Nel se-
guito cerchero di rispondere andando a fondo della questione. Per
sinteticita mi esprimero per rapidi punti.

1° Innanzitutto, notiamo un equivoco: fino al 1800 nessun
geometra si fidava di trattare i punti all'infinito; tutti i geometri
intendevano per retta un segmento sempre piu estensibile,
non una figura con i suoi punti estremi. Fu poi la geometria
proiettiva (oltre che I'analisi infinitesimale) che rese familiari
quei punti ai matematici.

2° Fu Playfair (1793) a proporre I'assioma delle parallele
nella forma attuale: “... esiste una ed una sola retta parallela
alla data”: una dizione che presuppone che noi conosciamo la
retta intera, compresi i suoi punti estremi. Invece Euclide, co-
me tutti i Greci antichi, voleva attenersi al finito e all’operativo
di riga e compasso, percid non ha mai scritto cosi; ma: se
I'angolo d’incidenza di una trasversale alla perpendicolare alla
retta data & minore di un retto, essa incontra questa retta; cio-
e la parallela & quella che non incontra la retta data perché
non ha I'angolo minore di un retto. Questa proposizione non &
un’affermazione su una possibilita reale; &€ un’illazione che de-
cide sugli sconosciuti punti all'infinito. Il confronto tra le propo-
sizioni di Euclide e di Playfair fa capire che la seconda ¢ idea-
listica e che quindi tutta la geometria euclidea, che usa in ma-
niera essenziale una proposizione idealistica, & essenzial-
mente idealistica. Essa risulta tale anche dal confronto, che si
€ potuto fare un secolo dopo, con le altre geometrie non eucli-
dee: il raggio di curvatura del suo spazio € un estremo: infini-
to. Invece, la si presenta sempre secondo la tradizione che le
attribuiva il massimo di operativita e costruibilita in matemati-
ca (tradizione nata perché i Greci, usando solo riga e com-
passo e le sole proporzioni, credettero di scampare al pericolo
di incontrare i numeri irrazionali; ma scampati da Scilla della
incommensurabilita, sono caduti in Cariddi della parallela es-
senzialmente idealistica).

3° Le famose figure introduttive di Saccheri e di Lobacev-
skij sono sbagliate di concetto: il piano euclideo non puo coin-
cidere con alcuna superficie non euclidea (si pensi alla super-
ficie sferica, quale rappresentazione della geometria ellittica).
Ognuna di quelle figure al piu pud rappresentare la zona infi-
nitesima del piano tangente euclideo attorno ad un punto per
cui passino i segmenti della parallela euclidea e di quelle non
euclidee; ma appena si prolungassero questi vari segmenti in-
finitesimi in una regione finita, essi divergerebbero, oltre che
sul piano euclideo, nello spazio; ad es. nella Fig. 1 la curva-
tura dello spazio ellittico costringe il segmento infinitesimo el-
littico, se prolungato, a uscire al di sotto del piano euclideo,
mentre quello dello spazio iperbolico al di sopra. D’altronde, la
figura & sbagliata all’'origine: pone una retta base che, per co-
me € data, non pud che essere euclidea; ma non c’€ una retta
euclidea che coincida con quelle non euclidee. Quindi ambe-
due quelle figure ostacolano la comprensione delle geometrie

non euclidee sin dall'inizio; esse sono delle trappole per la in-
tuizione. Potevano essere giustificate nei primi scopritori, che
dovettero arrampicarsi sugli specchi per intuire quella che era
una novita assoluta; ma oggi sono devianti, cosi tanto che an-
che l'insegnante che volesse introdurre queste geometrie sul-
la base della storia dovrebbe spiegare agli studenti che quelle
figure debbono essere viste opportunamente, secondo raggi
di curvatura finiti; ma questa spiegazione toglierebbe tutto
l'aiuto che di solito da una figura all’intuizione (cosi come se
volesse semplificare I'insegnamento dell’analisi infinitesimale
introducendo i vecchi infinitesimi di Leibniz, dovrebbe inse-
gnarli con concetti matematici solo in termini finiti; ma cio ri-
durrebbe molto il potere immaginifico di quel concetto).

Figura 1

4° Saccheri voleva liberare da ogni “neo” la geometria eu-
clidea dando la dimostrazione della verita dell’assioma delle
parallele. Secoli di fallimenti di analoghi tentativi dimostrano
(come nel caso del moto perpetuo) che & impossibile decidere
la verita dell’assioma delle parallele (che, di fatto, riguarda i
punti all’infinito) con i soli mezzi della geometria euclidea (riga
e compasso). Questa esperienza negativa, di fatto, anticipo il
teorema di Godel. Lobacevskij e Bolyai passarono dal proble-
ma di decidere la verita di questo assioma ad affermare che
esso ¢ indipendente dai precedenti (per dirla secondo un at-
teggiamento assiomatico); e quindi cercarono altre geome-
trie, del tutto diverse.

Fig. 2. Superficie di Beltrami a curvatura costante negativa

5° Beltrami sconvolse le convinzioni radicate sulla vaghez-
za e inutilita della geometria iperbolica trovandone un modello
nello spazio usuale (Fig. 2): la superficie di rotazione della
trattrice.l"’ Ma il modello valeva solo localmente (all'inizio esso
ha una cuspide); inutilmente egli cerco di estendere il modello
ad uno che valesse globalmente; Hilbert dimostro che non era
possibile. Si danno vari modelli anche per le geometrie ellitti-



che; il piu usuale € un ellissoide. Ma Lindemann dimostro che
sono tutti locali.? Quindi anche le maniere visive piu usuali di
presentare le geometrie non euclidee sono devianti, senza
che di solito lo si faccia notare; I'intuizione viene diretta su og-
getti geometrici parziali, che non fanno vedere tutta la realta
delle nuove geometrie.

6° Alla scoperta delle nuove geometrie, rispose con entu-
siasmo G. Battaglini, che creo una rivista apposita (“ll giornale
di Battaglini”). Li, presento una via rapida e didattica per intro-
durre la geometria iperbolica.[3] Trovo che in un triangolo con
un lato prolungato all'infinito ¢’ proporzionalita tra seno e se-
no iperbolico, e tra tangente e tangente iperbolica. Ma Enri-
ques dimostrd che la deduzione di Battaglini era sbagliata,
perché le relazioni tra i due tipi di funzione valgono nello spa-
zio, non sul piano.[‘” In conclusione, sul piano euclideo non
esistono maniere rigorose di introdurre le geometrie non eucli-
dee, neanche con funzioni speciali (Fig. 3).
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Fig. 3. Per M e N — oo, sinh MO / sinh NO = £k sin mo / sinno, ma non
cosh MO / cosh NO = £ cos mo /cos no.

7° Le geometrie non euclidee sono state scoperte (non
quando si sono studiate le superfici a raggio di curvatura fini-
to, come molti credono, ma) quando per la prima volta si &
pensato lo spazio euclideo al di fuori di esso; cid avvenne do-
po che la trigonometria divenne una teoria.”’! In effetti le for-
mule di trigonometria sferica cambiano con regolarita nelle
varie geometrie, sulla base di due parametri: il raggio di cur-
vatura, finito o infinito; e I'argomento reale o immaginario.
Proprio questa traducibilita delle formule nei casi euclideo ed
iperbolico, diede a Lobacevskij la convinzione di essere nel
giusto. Una didattica scolastica della trigonometria sferica da-
rebbe un fondamento formalmente corretto e sicuro allo stu-
dio delle geometrie non euclidee; ma purtroppo sembra poco
proponibile per la complessita delle sue formule.

8° La metrica di ogni geometria & diversa e in genere com-
plicata. Inoltre come selezionare tra le infinite metriche quelle
piu interessanti? (Per di piu quella di Minkowski, presentando
un segno meno, & degenere; per tal motivo non viene di solito
considerata dagli studi generali sulle geometrie non euclidee).

9° Alla fine del secolo XIX sono sopraggiunte le interpreta-
zioni date dalle geometrie proiettiva ed affine; ma esse coin-
volgono a priori i punti allinfinito, trattati come infinito in atto.
Sono quindi visioni metageometriche idealistiche, che ad es.
non possono rappresentare I'aspetto operativo della Matema-
tica.

10° Ulteriormente (1872), il programma di Erlangen ha
proposto di caratterizzare le geometrie mediante i gruppi di
trasformazione. Ma, in Klein, & rimasto solo un programma.
Proseguito da altri, si & allargato ad usare anche i gruppi to-
pologici. Alla fine la caratterizzazione ha dato un’ottantina di
geometrie, dove ¢ difficile riconoscere quelle piu semplici e
piu intuitive.’ Giustamente il Bourbaki afferma che (cosi) “la
geometria & svanita”. 7

11° Poincaré ha trovato, con tre metodi diversi, che le piu
importanti geometrie sono quattro: la geometria euclidea, la
ellittica, la iperbolica e quella che poi sara la geometria di Min-
kowski; e non tre come aveva creduto di dimostrare Helm-
holtz, che imponeva I'assioma del libero movimento dei corpi
rigidi (mentre invece la termodinamica non usa tali corpi).[8] Il
metodo piu semplice di Poincaré & quello di studiare le qua-
driche, studio che & abbordabile nella scuola. Si ottengono
per le geometrie non euclidee: un ellissoide, un iperboloide a
due falde e per l'ultima un iperboloide a una falda (che, come

caso estremo, € la figura del cono-luce della relativita ristretta)
(Fig. 4).

Fig. 4. Iperboloidi a due falde e a una falda

12° Nel 1899 Hilbert ha formalizzato in maniera assiomati-
ca la geometria euclidea e poi anche le altre geometrie: ogni
geometria & semplicemente un sistema di assiomi. Certamen-
te questa € la maniera piu semplice di affrontare le loro diver-
sita: cambiare qualche proposizione dell'assiomatica. Ma ogni
insegnante sa che la ventina di assiomi di Hilbert per la fami-
liare geometria euclidea sono indigeribili anche agli studenti
piu dotati. Inoltre il tentativo di assiomatizzare ogni altra teoria
matematica ha rivelato (teorema di Godel del 1931) che I'as-
siomatica non € la sola maniera di considerare una teoria, &
una maniera parziale (Beth, van Heijenoort, Hintikka). Quindi
la scelta di insegnare un’assiomatica sarebbe non solo estre-
mamente riduttiva della ricchezza e della intuitivita delle geo-
metrie, ma anche parzializzante.
[Segue al numero 185]
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La vita & sogno
di Nevio Nigro

La vita € sogno.
Ma sembra bella
anche la solitudine.
E il silenzio.

Non piango giovinezza.
Ma sempre
ovunque vado la ripenso.

da: Nevio Nigro, Incontri, Milano, Crocetti, 2008



