
MatematicaMente 
Pubblicazione mensile della sezione veronese della MATHESIS – Società Italiana di Scienze Matematiche e 
Fisiche – Fondata nel 1895 – Autorizzazione del Tribunale di Verona n. 1360 del 15 – 03 – 1999 – I diritti 
d’autore sono riservati. Direttore: Luciano Corso - Redazione: Alberto Burato, Elisabetta Capotosto, Carlo 
Marchiori, Giovanna Tessari – Via IV Novembre, 11/b – 37126 Verona – tel e fax (045) 8344785 – 338 
6416432 – e-mail: lcorso@iol.it – Stampa in proprio - Numero 185 – Pubblicato il 07 – 01 – 2014 

ISSN: 2037-6367 
 

�2

�1

0

1

2

�2

�1

0

1

2

�2

�1

0

1

2

 

MA PERCHÉ È COSÍ DIFFICILE 
INSEGNARE 

LE GEOMETRIE NON EUCLIDEE? 
 

di Antonino Drago [*] 
 

[Segue	
  dal	
  n.	
  184]	
  
13° Esiste però un metodo semplice per introdurre la visio-

ne delle quattro geometrie, quelle che fino al secolo scorso, 
sono state le più importanti nelle applicazioni alla realtà. Que-
sto metodo accoglie il suggerimento di Poincaré: le geometrie 
(più importanti) sono quattro; egli le individua (almeno indicati-
vamente) mediante i loro elementi fondamentali: la retta e il 
raggio di curvatura. Infatti, esse risultano da: la retta o finita 
(cioè anche periodica, la geometria ellittica) o come fascio di 
rette approssimanti i punti all’infinito, la geometria iperbolica); 
e il raggio di curvatura o infinito (geometria euclidea o geome-
tria di Minkowski), o finito (geometria ellittica e geometria iper-
bolica). Questo metodo è molto produttivo: permette di vedere 
subito tutte le geometrie d’interesse, di caratterizzarle nella lo-
ro costituzione basilare e di vederle globalmente nei loro mo-
delli di superfici quadratiche.[9] 

14° Questa caratterizzazione, che riguarda solo due ele-
menti base, non è ingenua o semplicistica perché, sul piano 
scientifico-filosofico, questi elementi corrispondono a quanto 
di più profondo si possa pensare delle geometrie: i fondamen-
ti (secondo una caratterizzazione dei fondamenti della mate-
matica e della scienza in generale che non ha avuto finora 
smentite o rivali). Essi sono costituiti da due opzioni, quella 
sul tipo di infinito (o in atto, o solo potenziale e magari finito), 
e quella sul tipo di organizzazione della teoria (o deduttiva, da 
pochi assiomi, o basata su un problema, come è la teoria dei 
numeri reali).[10] La tabella 1 indica le corrispondenze tra le 
scelte sulle due opzioni e le scelte sui due elementi geometri-
ci (retta e raggio di curvatura) che danno le quattro geome-
trie. In effetti, uno schema simile si trova anche per le quattro 
versioni del principio d’inerzia (di Cartesio, di Cavalieri, di En-
riques e di Lazare Carnot) e per i quattro tipi di meccanica (di 
Newton, dei continui, di Lagrange e di L. Carnot). Abbiamo 
così ottenuto non solo un’introduzione scolastica alle geome-
trie non euclidee, ma anche ai fondamenti delle stesse e in 
generale ai fondamenti della Matematica. In questo modo l’in-
troduzione scolastica delle geometrie non euclidee acquista 
tutta la sua importanza storica, fondazionale e culturale. 
 

Tabella n. 1. LE 4 GEOMETRIE 
 OA OP 

 
IA 

 

EUCLIDEA: 
- raggio di curvatura reale 
- rette: con i punti all'infinito 

 

PSEUDO-EUCLIDEA 
- raggio di curvatura non costante 
- rette: anche euclidee 

 
IP 

 

ELLITTICA: 
- raggio di curvatura finito reale 
- rette: senza punti all'infinito 

 

DI LOBACEVSKIJ 
- raggio di curvatura immaginario 
- rette: approssimanti punti 
            all'infinito 

OA = Organizzazione Aristotelica             OP = Organizzazione problematica 
IA = Infinito in atto                                       IP = Infinito potenziale 

 

15° Poiché le scelte sulle due opzioni sono dicotomiche, 
una geometria che alla base ha, ad es., l’infinito potenziale è 
incompatibile con una geometria che ha alla base l’infinito in 
atto (si pensi al caso di una retta). Più precisamente la diver-
sità delle scelte le rende incommensurabili;[11] letteralmente, 
senza una comune misura tra grandezze diverse; o meglio in 
questo caso, di teorie, senza un comune linguaggio (che sia 

al loro livello): ogni traduzione dell’una nell’altra è solo parzia-
le e si basa su formule particolari che sono da ricercare op-
portunamente (ad es., tra le prime tre geometrie solo le for-
mule trigonometriche spaziali possono essere tradotte facil-
mente).  

16° La morale di tutta questa storia allora è che le geome-
trie non euclidee sono l’esempio di un gruppo di teorie incom-
mensurabili; che perciò non si è mai riusciti a compararle fe-
delmente, benché si sia cercato di farlo con le più varie tecni-
che parzializzanti: le metriche, i modelli euclidei, la proiettiva, 
la affine, i gruppi, l’assiomatica. Allora, nella storia della mate-
matica le geometrie euclidee ci hanno insegnato molto: che ci 
sono non solo diverse maniere di concepire rette parallele, o 
diversi spazi geometrici, o diverse teorie geometriche, o diver-
se maniere di considerare assieme, in maniera parziale, un 
gruppo di teorie matematiche, ma anche, come abbiamo visto 
ora, che tra teorie diverse ci possono essere delle incommen-
surabilità. 

17° Per sormontare la difficoltà, invece di cercare tecniche 
sempre nuove, occorreva fare attenzione ai fondamenti delle 
geometrie non euclidee. Ci si sarebbe accorti che la sapienza 
della geometria euclidea è stata quella di basarsi su riga e 
compasso, o meglio su retta e cerchio, che di fatto indicano le 
opzioni fondamentali sull’infinito e sulla organizzazione degli 
enti geometrici e quindi anche delle idee della teoria. Inoltre, 
con più attenzione alla fondazione di Lobacevskij avrebbe fat-
to notare che già due secoli fa egli aveva già spaziato nei fon-
damenti della matematica: aveva criticato l’astrattezza della 
geometria euclidea ed aveva scelto per la sua geometria la 
sola operatività (quindi il solo infinito potenziale) e lo sviluppo 
senza assiomi ma rivolto a risolvere un problema; per il quale 
egli ha ragionato come nessun altro nella storia della scienza 
fino a lui (eccetto Sadi Carnot in termodinamica) in quella logi-
ca classica (frasi doppiamente negate e teoremi per assurdo) 
che è tipica della organizzazione teorica alternativa alla de-
duttiva.[12] 

18° Se tutto quanto detto sopra è stato a lungo ignorato o 
coperto è perché, da una parte, il Bourbaki ha svalutato la 
geometria come una costruzione troppo complessa e antiqua-
ta rispetto alle sue strutture basilari; e dall’altra, nella scuola la 
geometria euclidea è ancora mitica: infatti tutto l’insegnamen-
to di Matematica è composto da spezzoni di teorie, dalle più 
antiche (teoria dei numeri) alle più moderne (teoria degli insie-
mi), secondo un atteggiamento tecnicistico (calcolismo e teo-
remismo); senza che si faccia vedere mai una teoria compiu-
ta, salvo la geometria euclidea, l’unica a svettare come teoria 
intera.[13] Perciò essa è presentata in modo da turbare il meno 
possibile la sua tradizione. 
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Equazioni parametriche di una quartica 
 bicircolare 

 
di Nazario Magnarelli [**] 

 
Prima parte 
 

Si dimostra che la quartica di equazione 
C4: (x2 + y2)2 ! 4x(x2 + y2) ! 4y2 + 5x2 = 0      (1) 
è razionale e se ne trova le equazioni parametriche. 

Si vede subito che la C4 è simmetrica rispetto all’asse x e 
che essa passa per i punti P(0, 2) e P’(0, –2). La (1) ci dice 
anche che l’origine O(0, 0) è un punto doppio nodale con tan-
genti principali di equazioni y = (√5) x / 2 e y = (–√5) x / 2. Inter-
sechiamo la curva con una delle due tangenti nell’origine O, 
es.: y = (√5) x / 2. Si ottiene: 
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16
x4 ! 9x3 = 0 ,  (2) 

infine  
x3(9x–16) = 0.             (3) 
La (3) ci dice che la tangente y = (√5)x / 2 ha 3 intersezioni con 
la C4 nell’origine O; ma di queste 3 intersezioni, 2 sono assor-
bite nel punto di tangenza con un ramo della C4, la terza è do-
vuta al punto di intersezione della tangente con l’altro ramo 
del cappio passante per il nodo O, che pertanto è un nodo or-
dinario. 
Studiamo ora i punti impropri della quartica. 
Passiamo a coordinate omogenee (x, y, z) e intersechiamo 
con la retta impropria z = 0. Si vede subito che questa retta ha 
due intersezioni con la C4 in ognuno dei due punti ciclici I1(1, i, 
0) e I2(1, –i, 0). Facciamo vedere che essi sono punti doppi e 
che quindi la quartica è bicircolare. Infatti, intersecando la cur-
va con la generica retta isotropa y = ix + h passante per il pun-
to I1 vediamo che l’equazione risolvente si  abbassa di 2 gradi 
per qualsiasi valore complesso di h. La stessa conclusione 
possiamo dire  per il punto I2(1, –i, 0); quindi i punti ciclici sono 
punti doppi. Le intersezioni della C4 con la retta isotropa y = ix 
+ h diventano esattamente tre per i valori di h che risultano ra-
dici dell’equazione: 4h2 + 8ih – 9 = 0.       (4) 
Concludiamo che i punti ciclici I1(1, i, 0), I2(1, –i, 0), sono nodi 
ordinari. 

Tomaso Millevoi, dell’Università di Padova, ci ha informati 
che quando i punti doppi di una C4 sono i punti ciclici del pia-
no e l’origine O delle coordinate, possiamo trovare le equa-
zioni parametriche della curva per mezzo di una trasformazio-
ne per raggi vettori reciproci, cioè con la trasformazione 
x = X / (X2 + Y2) , y = Y / (X2 + Y2)      (5) 
Seguiamo i suoi suggerimenti. Sostituendo nella (1) si ha: 
[X2 / (X2 + Y2)2 + Y2 / (X2 + Y2)2]2 + 
–4(X / (X2 + Y2))[X2 / (X2 + Y2)2 + Y2 / (X2 + Y2)2] + 
–4(Y2 / (X2 + Y2)2 + 5(X2 / (X2 + Y2)2 = 0. 
Con un’evidente semplificazione abbiamo: 

1
(X2 +Y2)2

! 4 X
(X2 +Y2)2

+ 5X
2 ! 4Y2

(X2 +Y2)2
= 0 .     (6) 

Riducendo a forma intera si ha: 
 

5X2 – 4Y2 – 4X + 1 = 0.          (7) 
 

La curva trasformata (7) è un’iperbole che passa per il punto 
P(0; ½). Troviamo le equazioni  parametriche della conica in- 

tersecandola con il fascio di rette proprio di centro P. Si ha il 
sistema 

5X2 ! 4Y2 ! 4X +1= 0
Y = t X +1 2  .

"
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          (8) 

 Sostituendo, dopo qualche passaggio si ha: 
(5 – 4t2)X2 – 4(t+1)X = 0.          (9) 
La (9) ha le radici X = 0 (che non interessa) e 
X = (4t + 4) / (5 – 4t2) . 
Sostituendo in Y = t X + 1/2 si ottiene: 
Y = t(4t + 4) / (5 –4t2) + 1/2 = (8t2 + 8t + 5 – 4t2) / 2(5 – 4t2) (10) 
Le equazioni parametriche dell’iperbole (9) sono quindi: 
X = (4t + 4) / (5 – 4t2),  Y = (4t2 + 8t + 5) / 2(5 – 4t2)  (11) 
Sostituendo nella (51) della trasformazione per raggi vettori si 
ha: 
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X2 +Y2
= 4t + 4
5! 4t2

:
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, 

e semplificando e sistemando si  ha: 

x(t) = (16t +16) ! (5" 4t2)
4(4t + 4)2 + (4t2 +8t + 5)2

.        (12) 

La (12) ci dà l’espressione parametrica razionale della coordi-
nata x(t) . Avendo già trovato le equazioni parametriche X(t) e 
Y(t) dell’iperbole [si ricordino le (11)], possiamo ora trovare 
anche l’ordinata y della nostra C4 in funzione del parametro t. 
Ricordando la (52) si ha: 

y = Y
X2 +Y2

= 4t
2 +8t + 5
2(5! 4t2)
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  (13) 

e quindi 

y(t) = (10!8t2) " (4t2 +8t + 5)
4(4t + 4)2 + (4t2 +8t + 5)2

 .       (14) 

Riassumendo i dati trovati, possiamo dire che le equazioni pa-
rametriche della C4 sono: 

x(t) = (16t +16) ! (5" 4t2)
4(4t + 4)2 + (4t2 +8t + 5)2

y(t) = (10"8t2) ! (4t2 +8t + 5)
4(4t + 4)2 + (4t2 +8t + 5)2

.
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.       (15) 

Con l’aiuto del programma «Derive», possiamo ora tracciare il 
grafico della nostra curva C4: si veda figura 1 [eseguire i se-
guenti comandi: crea, vettore = 2, espressioni di x(t) e di y(t)]. 
 

 
 

Fig. 1 
 

Questo grafico è simmetrico rispetto all’asse x, come già ci di-
ce l’equazione (1) della quartica; esso ci mostra anche che le 
rette x = 2 e x = –2 / 5, parallele all’asse y del riferimento carte-
siano, potrebbero essere due rette bitangenti alla C4. 
Proviamo algebricamente che ciò è vero. Intersechiamo la C4 
con la generica parallela all’asse y. [Segue al numero 186] 
 
[**] Socio Mathesis di Latina 


