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MA PERCHE E COSI DIFFICILE
INSEGNARE
LE GEOMETRIE NON EUCLIDEE?

di Antonino Drago [+l

[Segue dal n. 184]

13° Esiste perd un metodo semplice per introdurre la visio-
ne delle quattro geometrie, quelle che fino al secolo scorso,
sono state le piu importanti nelle applicazioni alla realta. Que-
sto metodo accoglie il suggerimento di Poincaré: le geometrie
(piu importanti) sono quattro; egli le individua (almeno indicati-
vamente) mediante i loro elementi fondamentali: la retta e |l
raggio di curvatura. Infatti, esse risultano da: la retta o finita
(cioé anche periodica, la geometria ellittica) o come fascio di
rette approssimanti i punti all'infinito, la geometria iperbolica);
e il raggio di curvatura o infinito (geometria euclidea o geome-
tria di Minkowski), o finito (geometria ellittica e geometria iper-
bolica). Questo metodo & molto produttivo: permette di vedere
subito tutte le geometrie d’interesse, di caratterizzarle nella lo-
ro costituzione basilare e di vederle globalmente nei loro mo-
delli di superfici quadratiche.”

14° Questa caratterizzazione, che riguarda solo due ele-
menti base, non € ingenua o semplicistica perché, sul piano
scientifico-filosofico, questi elementi corrispondono a quanto
di piu profondo si possa pensare delle geometrie: i fondamen-
ti (secondo una caratterizzazione dei fondamenti della mate-
matica e della scienza in generale che non ha avuto finora
smentite o rivali). Essi sono costituiti da due opzioni, quella
sul tipo di infinito (o in atto, o solo potenziale e magari finito),
e quella sul tipo di organizzazione della teoria (o deduttiva, da
pochi assiomi, o basata su un problema, come ¢ la teoria dei
numeri reali).[w] La tabella 1 indica le corrispondenze tra le
scelte sulle due opzioni e le scelte sui due elementi geometri-
ci (retta e raggio di curvatura) che danno le quattro geome-
trie. In effetti, uno schema simile si trova anche per le quattro
versioni del principio d’inerzia (di Cartesio, di Cavalieri, di En-
riques e di Lazare Carnot) e per i quattro tipi di meccanica (di
Newton, dei continui, di Lagrange e di L. Carnot). Abbiamo
cosi ottenuto non solo un’introduzione scolastica alle geome-
trie non euclidee, ma anche ai fondamenti delle stesse e in
generale ai fondamenti della Matematica. In questo modo I'in-
troduzione scolastica delle geometrie non euclidee acquista
tutta la sua importanza storica, fondazionale e culturale.

Tabellan. 1. LE 4 GEOMETRIE

OA oP

EUCLIDEA: PSEUDO-EUCLIDEA
- raggio di curvatura reale - raggio di curvatura non costante
- rette: con i punti all'infinito - rette: anche euclidee

P ELLITTICA: DI LOBACEVSKIJ

- raggio di curvatura finito reale - raggio di curvatura immaginario
- rette: senza punti all'infinito - rette: approssimanti punti
all'infinito

OA = Organizzazione Aristotelica OP = Organizzazione problematica

IA = Infinito in atto IP = Infinito potenziale

15° Poiché le scelte sulle due opzioni sono dicotomiche,
una geometria che alla base ha, ad es., l'infinito potenziale &
incompatibile con una geometria che ha alla base l'infinito in
atto (si pensi al caso di una retta). Piu precisamente la diver-
sita delle scelte le rende incommensurabili;[”] letteralmente,
senza una comune misura tra grandezze diverse; o meglio in
questo caso, di teorie, senza un comune linguaggio (che sia

al loro livello): ogni traduzione dell’'una nell’altra & solo parzia-
le e si basa su formule particolari che sono da ricercare op-
portunamente (ad es., tra le prime tre geometrie solo le for-
mule trigonometriche spaziali possono essere tradotte facil-
mente).

16° La morale di tutta questa storia allora & che le geome-
trie non euclidee sono I'esempio di un gruppo di teorie incom-
mensurabili; che percid non si & mai riusciti a compararle fe-
delmente, benché si sia cercato di farlo con le piu varie tecni-
che parzializzanti: le metriche, i modelli euclidei, la proiettiva,
la affine, i gruppi, I'assiomatica. Allora, nella storia della mate-
matica le geometrie euclidee ci hanno insegnato molto: che ci
sono non solo diverse maniere di concepire rette parallele, o
diversi spazi geometrici, o diverse teorie geometriche, o diver-
se maniere di considerare assieme, in maniera parziale, un
gruppo di teorie matematiche, ma anche, come abbiamo visto
ora, che tra teorie diverse ci possono essere delle incommen-
surabilita.

17° Per sormontare la difficolta, invece di cercare tecniche
sempre nuove, occorreva fare attenzione ai fondamenti delle
geometrie non euclidee. Ci si sarebbe accorti che la sapienza
della geometria euclidea € stata quella di basarsi su riga e
compasso, o meglio su retta e cerchio, che di fatto indicano le
opzioni fondamentali sull’infinito e sulla organizzazione degli
enti geometrici e quindi anche delle idee della teoria. Inoltre,
con piu attenzione alla fondazione di Lobacevskij avrebbe fat-
to notare che gia due secoli fa egli aveva gia spaziato nei fon-
damenti della matematica: aveva criticato I'astrattezza della
geometria euclidea ed aveva scelto per la sua geometria la
sola operativita (quindi il solo infinito potenziale) e lo sviluppo
senza assiomi ma rivolto a risolvere un problema; per il quale
egli ha ragionato come nessun altro nella storia della scienza
fino a lui (eccetto Sadi Carnot in termodinamica) in quella logi-
ca classica (frasi doppiamente negate e teoremi per assurdo)
che & tiPica della organizzazione teorica alternativa alla de-
duttiva.l"?

18° Se tutto quanto detto sopra € stato a lungo ignorato o
coperto € perché, da una parte, il Bourbaki ha svalutato la
geometria come una costruzione troppo complessa e antiqua-
ta rispetto alle sue strutture basilari; e dall’altra, nella scuola la
geometria euclidea & ancora mitica: infatti tutto I'insegnamen-
to di Matematica € composto da spezzoni di teorie, dalle piu
antiche (teoria dei numeri) alle piu moderne (teoria degli insie-
mi), secondo un atteggiamento tecnicistico (calcolismo e teo-
remismo); senza che si faccia vedere mai una teoria compiu-
ta, salvo la geometria euclidea, I'unica a svettare come teoria
intera.l"® Percio essa & presentata in modo da turbare il meno
possibile la sua tradizione.
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Equazioni parametriche di una quartica
bicircolare

di Nazario Magnarelli [**]

Prima parte

Si dimostra che la quartica di equazione
c*: (x> +y2)? —4x(x> +y*) -4y? +5x2 =0 (1
€ razionale e se ne trova le equa2|on| parametriche.

Si vede subito che la C* & simmetrica rispetto allasse x e
che essa passa per i punti P(0, 2) e P’(0, —=2). La (1) ci dice
anche che l'origine O(0, 0) &€ un punto doppio nodale con tan-
genti principali di equazioni y = (¥5)x /2 e y = (-\5) x / 2. Inter-
sechiamo la curva con una delle due tangenti nell’origine O,
es.:y=(V5)x /2. Si ottiene:

2
xz+§x2 —4x x2+éx2 =0, 81 x*-9x* =0, (2)
4 4 16
infine
x*(9x-16) = 0. 3)

La (3) ci dice che la tangente y = (V5)x / 2 ha 3 intersezioni con
la C* nell origine O; ma di queste 3 |nterse2|on| 2 sono assor-
bite nel punto di tangenza con un ramo della C*, la terza & do-
vuta al punto di intersezione della tangente con Il'altro ramo
del cappio passante per il nodo O, che pertanto € un nodo or-
dinario.

Studiamo ora i punti impropri della quartica.

Passiamo a coordinate omogenee (x, y, z) e intersechiamo
con la retta impropria z = 0 Si vede subito che questa retta ha
due intersezioni con la C* in ognuno dei due punti ciclici Ij(1, i,
0) e I(1, —i, 0). Facciamo vedere che essi sono punti doppi e
che quindi la quartica € bicircolare. Infatti, intersecando la cur-
va con la generica retta isotropa y = ix + h passante per il pun-
to I, vediamo che I'equazione risolvente si abbassa di 2 gradi
per qualsiasi valore complesso di h. La stessa conclusione
possiamo dire per il punto I,(1, i, 0); quindi i punti ciclici sono
punti doppi. Le intersezioni della C* con la retta isotropa y =

+ h diventano esattamente tre per i valori di h che risultano ra-
dici del’'equazione: 4h? + 8ih — 9 = 0. (4)
Concludiamo che i punti ciclici I,(1, i, 0), I,(1, —i, 0), sono nodi
ordinari.

Tomaso Millevoi, dell’Universita di Padova, ci ha informati
che quando i punti doppi di una C* sono i punti ciclici del pia-
no e l'origine O delle coordinate, possiamo trovare le equa-
zioni parametriche della curva per mezzo di una trasformazio-
ne per raggi vettori reciproci, cioé con la trasformazione
x=X/(X*+Y) , y=Y/(X*+Y) (5)
Seguiamo i suoi suggerimenti. Sostituendo nella (1) si ha:

[Xz / (X2 4 YZ)Z +Y?%/ (X2 + Yz)z]z +

AKX/ X+ YY[XE (XYY XY+
42 (XY X/ (XE+ YR =0.

Con un’evidente semplificazione abbiamo:

1 X 5X*-4Y? _ )
X2+Y?)?  (X2+Y%H? (xX*+Y?)?
Riducendo a forma intera si ha:
5X2—4Y*—4X +1=0. (7)

La curva trasformata (7) € un’iperbole che passa per il punto
P(0; %). Troviamo le equazioni parametriche della conica in-

tersecandola con il fascio di rette proprio di centro P. Si ha il
sistema

5X%2—4Y? —4X+1=0
Y=tX+1/2 .
Sostituendo, dopo qualche passaggio si ha:
(5 —4)X* - 4(t+1)X = 0. (9)
La (9) ha le radici X = 0 (che non interessa) e
=(4t+4)/(5-4t%).
Sostituendo in Y =tX + 1/2 si ottiene:

(8)

Y =t(4t+4) /(54 + 1/2 = (8t + 8t + 5—4t1) / 2(5 - 4t>)  (10)
Le equazioni parametriche dell'iperbole (9) sono quindi:
X=(4t+4)/(5-4tD), Y =(4+8t+5)/2(5-4t) (11)

Sostituendo nella (51) della trasformazione per raggi vettori si

ha:

= X _ 4t+4 : (4t+4) (4t +8t+5)
X2+Y? 5-48% | (5-4t%)? 4(5-4t)?

e semplificando e sistemando si ha:

(16t+16)-(5—4t%)

4(4t+4)% + (41 + 8t +5)°

La (12) ci da I'espressione parametrica razionale della coordi-

nata x(t) . Avendo gia trovato le equazioni parametriche X(t) e

Y (t) dell'iperbole [si ricordino le (11)] possiamo ora trovare

anche l'ordinata y della nostra C* in funzione del parametro ¢.
Ricordando la (52) si ha:

x(t) = (12)

Y 4 +81+5 4t+4)2 (41> +8t+5)° (13)
TXIav? 2(5-4t3) | (5-4t2)2  4(5-4t2)?
e quindi
2y (442
_ (10-8%)- (47 +8t+5) (14)
4(4t+4)? + (412 + 8t +5)°

Riassumendo i dati trovati, possiamo dire che le equazioni pa-
rametriche della C* sono:

(16t+16)-(5-4t%)
4(4t+4)% + (462 +8t+5)°
_(10-8t%)-(4t% +8t+5)
44+ 4) + (42 4814 5)>
Con l'aiuto del programma «Derlve» possiamo ora tracciare il

grafico della nostra curva C* si veda figura 1 [eseguire i se-
guenti comandi: crea, vettore = 2, espressioni di x(t) e di y(t)]-

B

x(t)=

(15)

v

-1

L

Fig. 1

Questo grafico € simmetrico rispetto all’asse x, come gia ci di-
ce 'equazione (1) della quartica; esso ci mostra anche che le
rette x=2 e x=-2/5, parallele all'asse y del rlferlmento carte-
siano, potrebbero essere due rette bitangenti alla ct.

Proviamo algebricamente che cid € vero. Intersechiamo la ct
con la generica parallela all’asse y. [Segue al numero 186]

[**] Socio Mathesis di Latina



