
1) Numeri reali 

Premettiamo un teorema fondamentale, utilizzato di fatto fin dalla scuola primaria e dimostrato dal 

sommo matematico Carl Friederich Gauss nel  1798.   

Teorema fondamentale dell’aritmetica: “Ogni numero naturale maggiore di 1 o è 

un numero primo  o si può esprimere come prodotto di numeri primi. Tale 

rappresentazione è unica, se si prescinde dall'ordine in cui compaiono i fattori. 

Utilizziamo il teorema fondamentale dell’aritmetica per dimostrare l’irrazionalità di  √2  ; 

ricordiamo che il simbolo √2  indica il numero che corrisponde alla soluzione positiva 

dell’equazione  

                                                                 𝑥2 = 2                                               (1)   

Vogliamo dimostrare che non esiste un numero razionale 𝑥   positivo, cioè del tipo 
𝑝

𝑞
  con 𝑝  

e  𝑞  numeri naturali, che soddisfi la (1) ; dimostriamo tale enunciato per assurdo, cioè 

mostriamo che, negandone  la tesi, cioè supponendo vera l’uguaglianza (
𝑝

𝑞
)

2

= 2  con 

𝑝 , 𝑞 ∈ 𝑁 , si arriva ad una contraddizione con enunciati (assiomi o teoremi) verificati in 

precedenza. Veniamo alla dimostrazione: partiamo dall’uguaglianza  (
𝑝

𝑞
)

2

= 2   supposta 

vera; essa equivale all’uguaglianza  

                                                                  𝑝2 = 2𝑞2                                                (2) 

Applichiamo a tale uguaglianza il teorema fondamentale dell’aritmetica: il primo membro 

𝑝2  è un numero naturale, che, scomposto in fattori primi, contiene il numero  2  un numero 

pari di volte (eventualmente zero) ; il secondo membro  2𝑞2  è ancora un numero naturale, 

ma scomponendo  𝑞2  in fattori primi si ha che ovviamente anch’esso contiene 2  un 

numero pari di volte (eventualmente zero) e che quindi  stavolta 2𝑞2 contiene il numero 2 

un numero dispari di volte. L’uguaglianza (2) è quindi in contraddizione con il teorema 

fondamentale dell’aritmetica, perché avremmo un numero naturale ( 𝑝2 = 2𝑞2 ) con due 

diverse scomposizioni in fattori primi. 

Abbiamo così dimostrato che √2  , soluzione positiva della (1) , non è un numero 

razionale, cioè è per definizione un numero irrazionale. Sapete forse già che la 

matematica ha “bisogno” di uscire dall’insieme dei numeri razionali . Tale “bisogno” si è 

manifestato subito con l’applicazione del teorema di Pitagora al calcolo della diagonale 𝐷 

del quadrato di lato 1 , che soddisfa la (1)  e quindi vale  𝐷 = √2 . Tentiamo allora il calcolo 

di √2  : cerchiamo cioè il numero positivo 𝑥  che soddisfa la (1) . 

Usiamo  numeri razionali per trovare approssimazioni per difetto e per eccesso di  √2  , 

cioè calcoliamo degli intervalli razionali (in particolare con estremi decimali non periodici) 

che contengano √2 all’interno di ciascun intervallo. Se abbiamo un intervallo [𝑎, 𝑏] (con 

𝑎 , 𝑏 ≥ 1 ) , la condizione 𝑎 < √2 < 𝑏 è equivalente alla condizione 



                                                         𝑎2 < 2 < 𝑏2                                                   (3) 

Partiamo dall’intervallo [𝑎0 , 𝑏0] = [1 , 2] , che soddisfa alla condizione 𝑎0 < √2 < 𝑏0 perché 

12 < 2 < 22 ; suddividiamo  [𝑎0 , 𝑏0] in dieci intervalli uguali (lavorando così sempre con 

numeri decimali)  e otteniamo, con l’uso della calcolatrice, [𝑎1 , 𝑏1] = [1.4 , 1.5] in quanto 

per gli estremi di tale intervallo vale ancora la (3) . L’ampiezza di [𝑎0 , 𝑏0] vale 1 , 

l’ampiezza di [𝑎1 , 𝑏1] vale  
1

10
  ; inoltre [𝑎1 , 𝑏1] ⊂ [𝑎0 , 𝑏0] . Il procedimento può continuare, 

sempre dividendo l’intervallo ottenuto ( [𝑎1 , 𝑏1] ) in dieci parti; ci fermeremmo solo se 

trovassimo un numero decimale, dei nove che di volta in volta calcoliamo, che 

soddisfacesse la (1) , ma sappiamo che è impossibile appunto per l’irrazionalità di √2  .  

Si arriva quindi a definire, con questo metodo, una successione (!)  di intervalli [𝑎𝑛 , 𝑏𝑛] con 

le due proprietà seguenti:  

                                                   [𝑎𝑛+1 , 𝑏𝑛+1] ⊂ [𝑎𝑛 , 𝑏𝑛]                                         (4a) 

                                                    𝑏𝑛 − 𝑎𝑛 = (
1

10
)

𝑛

                                                   (4b) 

Commentiamo tale risultato: per la (4a)  gli intervalli [𝑎𝑛 , 𝑏𝑛] sono “incapsulati” l’uno dentro 

il precedente come matrioske russe o scatole cinesi; le ampiezze 𝑑𝑛 degli intervalli, cioè  

𝑑𝑛 = 𝑏𝑛 − 𝑎𝑛 , diventano per la (4b) “arbitrariamente piccole”: 1 ,
1

10
 ,

1

100
 ,

1

1000
 , … .  

Ogni  intervallo di questa successione di intervalli razionali contiene √2  al suo interno ma 

√2  non è un numero razionale; 𝑎𝑛 è una successione crescente di approssimazioni per 

difetto di √2  , cioè 𝑎𝑛 < 𝑎𝑛+1 e 𝑎𝑛 < √2  per ogni  𝑛 ∈ 𝑁 ;  𝑏𝑛 è una successione 

decrescente di approssimazioni per eccesso  di   √2  , cioè 𝑏𝑛 >  𝑏𝑛+1 e  𝑏𝑛 > √2  per ogni  

𝑛 ∈ 𝑁 . 

La forma della   (4b)  nasce dalla scelta di suddividere ogni intervallo in dieci parti uguali; i 

matematici hanno generalizzato questa proprietà delle ampiezze di diventare “piccole 

quanto si vuole”  attraverso il concetto di limite, che abbiamo già analizzato nel mio 

precedente contributo:  

                                              lim
𝑛→∞

(𝑏𝑛 − 𝑎𝑛) = 0                                                    (4c) 

Ogni successione  [𝑎𝑛 , 𝑏𝑛]  di intervalli di numeri razionali  tale che valgano la (4a) e la 

(4c), detta scatola cinese di numeri razionali, definisce un numero reale. In realtà la 

corrispondenza tra scatole cinesi di numeri razionali e numeri reali  non è biunivoca: si 

possono fare scelte diverse per definire lo stesso numero reale.  Ad esempio, per cercare  

√2 , si possono dividere gli intervalli in un numero di parti uguali diverso da 10…). Le 

(infinite…) scatole cinesi utilizzabili  per costruire uno stesso  numero reale attraverso la 

(4a) e la (4c)  possono essere accorpate in un’unica classe (occorrerebbe definire meglio 

le cose ma non ci addentriamo nei dettagli) . Dato un numero reale, possiamo lavorare 

con esso scegliendo un qualsiasi rappresentante di questa classe e costruire un’algebra, 

cioè un insieme di operazioni (somma, prodotto,…) che funzionino indipendentemente 



dalla scelta effettuata. Ancora evitando di entrare nei dettagli, ci limitiamo per ora ad 

accettare il fatto che si possano definire le operazioni tra numeri reali, ognuno identificato 

come scatola cinese di numeri razionali, lavorando per ogni numero reale con una 

qualunque scatola cinese rappresentante della sua classe.  

2) I numeri irrazionali e la calcolatrice  

Un numero irrazionale è definito come un numero relativo la cui rappresentazione 

decimale è illimitata e non periodica (ricordiamo infatti a questo proposito che ad esempio 

la rappresentazione decimale di  
1

3
  , numero razionale, corrisponde a 0, 3̅  che ha infinite 

cifre decimali ma è un numero periodico. L’insieme dei numeri reali si definisce poi come 

l’unione dell’insieme dei numeri razionali e l’insieme dei numeri irrazionali, eludendo però il 

problema della vera definizione di numero reale, cioè di cosa accomuna i due sottoinsiemi. 

Come avete visto, abbiamo cercato di fornire questa definizione (anche se non è l’unico 

modo possibile) costruendo i numeri reali tramite i numeri razionali. 

Un ultimo cenno ai numeri irrazionali e alla loro algebra: supponiamo ad esempio di voler 

calcolare il numero √2 + √3 . √2  è irrazionale, come già dimostrato; anche √3  lo è   e la 

dimostrazione si fa allo stesso modo (provate per esercizio!). Se imposto la somma con 

una calcolatrice (uso una di quelle decisamente vecchiotte, le vostre sono sicuramente 

migliori…) , per √2   appare sul display il numero decimale 1,414213562 . E’ un numero di 

10 cifre  ed è ovviamente razionale, essendo decimale; l’algoritmo su cui funziona la 

calcolatrice (più veloce di quello usato da noi) per calcolare √2   ha fornito 𝑎9 , cioè in 

questo caso l’estremo sinistro del decimo intervallo della scatola cinese [𝑎𝑛 , 𝑏𝑛] usata; 

naturalmente l’estremo destro varrà 𝑏9 = 1,414213563 . Per √3  il discorso è identico: 

volendo chiamare [𝑎′𝑛 , 𝑏′𝑛] una sua scatola cinese, dato che la macchinetta fornisce sul 

display per  √3  il numero  1,732050808  , avremo 𝑎′9 = 1,732050808   

 e    𝑏′9 = 1,732050809  . Il calcolo di   √2 + √3  alla macchinetta fornirebbe naturalmente il 

numero decimale 𝑎9 + 𝑎′9 ;  questo è compatibile con la definizione di somma di numeri 

reali fornita dalla teoria, che non abbiamo approfondito ma che possiamo immaginare: per 

sommare due scatole cinesi   [𝑎𝑛 , 𝑏𝑛]  e  [𝑎′𝑛 , 𝑏′𝑛] si calcola [𝑎𝑛 + 𝑎′𝑛 , 𝑏𝑛 + 𝑏′𝑛] che si 

dimostra essere anch’essa una scatola cinese; quest’ultima  sarà per definizione associata 

appunto al numero reale √2 + √3 .  

 


