
1 ) Eventi nello spazio-tempo  

Vogliamo studiare l’evoluzione di semplici sistemi fisici applicando i principi della teoria 

della relatività. Lo faremo descrivendo sistemi che ci sono familiari fin dall’inizio del nostro 

studio della fisica, come il moto di un treno in prossimità di una stazione ferroviaria, di un 

aeroplano in un viaggio intercontinentale o di un’astronave in un viaggio interplanetario; ci 

interesserà introdurre anche sistemi la cui descrizione ha bisogno di elementi nuovi, come 

ad esempio l’emissione e ricezione di un impulso luminoso o il moto di una particella 

elementare instabile. Anche se ci aspettiamo differenze quantitative di comportamento tra i 

primi tre casi elencati e gli ultimi due, legate come minimo ai diversi ordini di grandezza 

delle velocità dei moti, vogliamo costruire una teoria che funzioni per ognuno dei cinque e 

che comunque si riduca alla meccanica newtoniana, che già conosciamo,  per velocità del 

sistema piccole rispetto a quella della luce. 

Diamo ora il concetto di evento, su esempi concreti del tipo di quelli dell’elenco che 

segue: 

a )Transito di un dato treno nella stazione di Pontedera; 

b )Atterraggio di un dato aereo di linea all’aeroporto di Fiumicino; 

c ) impatto di una navicella spaziale sulla superficie lunare; 

d ) emissione di un impulso luminoso da una data sorgente nel nostro laboratorio; 

e ) rivelazione di un muone generato nell’alta atmosfera per collisione di raggi cosmici 

da parte di un rivelatore del dipartimento di fisica dell’università di Pisa.  

Per descrivere ognuna di queste situazioni concrete “elementari” , che chiameremo 

evento (attenzione: il significato del termine è qui completamente diverso da quello usato 

in teoria della probabilità!), occorreranno due dati: il punto dello spazio fisico e l’istante 

associati ad essa.  In realtà abbiamo già una certa familiarità con il concetto di evento 

appena definito: nello studio  del moto rettilineo di un punto materiale, abbiamo usato i 

grafici posizione-tempo, nei quali ogni punto 𝑃 del grafico corrisponde per l’appunto ad un 

evento, cioè 𝑃(𝑡; 𝑥) con 𝑡 istante e 𝑥 posizione del punto materiale in quell’istante. In 

relatività si preferisce per un moto rettilineo invertire le coordinate, per cui descriveremo un 

evento, o come si dice un punto dello spazio-tempo  𝑃(𝑥; 𝑡) , usando un riferimento 

cartesiano 𝑥 − 𝑡 come in figura: 
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Inizieremo il nostro studio enunciando un postulato fondamentale che chiameremo per 

comodità “principio 1”: “La velocità della luce nel vuoto ha lo stesso valore in tutti i sistemi 

di riferimento in moto relativo con vettore velocità costante”. 

Indicheremo con 𝑐 il modulo della velocità della luce nel vuoto, che vale con ottima 

approssimazione 𝑐 = 3.0 ∙ 108 𝑚/𝑠  e che per il principio appena enunciato è una delle 

costanti fondamentali della fisica. 

Questo postulato, enunciato da Einstein nel 1905 , è in contraddizione palese con la nota  

legge di composizione delle velocità, per la quale, se 𝑉⃗  è la velocità di un riferimento S’ 

rispetto al riferimento S e 𝑣   e  𝑣  ′ sono le rispettive velocità in S e S’ , si ha  

                                                  𝑣 = 𝑣 ′ + 𝑉⃗                                                            (1) 

Si avrebbe infatti, se nella (1)  𝑣   è la velocità della luce nel riferimento S, 𝑣 = 𝑣 ′  per il 

principio1 e 𝑣 = 𝑣 + 𝑉⃗  che è falsa perché per ipotesi 𝑉 ≠ 0 . Chiaramente dovremo 

decidere se cambiare la (1), cioè di fatto la meccanica newtoniana, o il principio 1 : per ora 

continuiamo ad applicare quest’ultimo senza preoccuparci della (1) , ne riparleremo al 

momento opportuno. 

2 ) Orologio a luce e tempo proprio 

Si consideri il sistema fisico schematizzato in fig. 1, che chiameremo orologio a luce: una 

sorgente (puntiforme ) L che emette  un segnale luminoso in direzione ortogonale a uno 

specchio S a distanza  h da L. Lo specchio riflette il segnale fino a un rivelatore R posto 

nelle immediate vicinanze di L, come in fig. 1 , che può trasmettere istantaneamente a L il 

comando per l’emissione  di un nuovo segnale e far  funzionare così  il nostro sistema per 

un tempo arbitrario. 
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L’intervallo di tempo tra emissione e rivelazione di un segnale, che chiameremo ∆𝜏 , vale: 

∆𝜏 =
2ℎ

𝑐
                                                (2) 

Osserviamo che ∆𝜏 è l’intervallo di tempo tra i due eventi “emissione del segnale” e 

“ricezione del segnale” misurato nel sistema di riferimento (o più brevemente  riferimento, 

termine preferito dai fisici) in cui l’orologio a luce è in quiete,  o come si dice nel sistema 

di quiete dell’orologio a luce. Se il sistema dispone di un congegno che conta i comandi di 

emissione del segnale successivo, l’orologio a luce può effettivamente funzionare da 

orologio: l’intervallo di tempo segnato dall’orologio a partire dall’istante (e dall’evento) della 

prima emissione è 𝑛∆𝜏  se vengono contati  𝑛 comandi; ∆𝜏 funge così da “unità di tempo” 

del nostro “orologio digitale”.  

Supponiamo ora che l’orologio a luce si muova con velocità 𝑣    (diretta verso destra come 

in fig.2)  rispetto al nostro laboratorio: 

 

 

 

 

 

 

 

 

       

 

 

 

Il percorso LSR, che in fig. 1 era quello “andata e ritorno”, è ora nel  riferimento 

del laboratorio formato da due segmenti,  trasversali e non verticali,  come in fig.2: la 

distanza complessiva percorsa dalla luce, per il principio 1 , vale  𝑐∆𝑡 , dove ∆𝑡 è il tempo 

complessivo emissione-ricezione. Ma applicando il teorema di Pitagora si ottiene 

banalmente usando la (2): 

                               𝑐∆𝑡 = 2√ℎ2 + (
∆𝑥

2
)
2

= √𝑐2∆𝜏2 + ∆𝑥2                                    (3) 

da cui 
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Fig. 2 



                                              ∆𝜏 = √∆𝑡2 −
∆𝑥2

𝑐2
                                                     (3 bis) 

 

Notiamo un fatto del tutto nuovo: l’intervallo di tempo ∆𝜏 è quello tra i due eventi emissione 

del segnale-ricezione del segnale nel riferimento di quiete dell’orologio a luce; l’intervallo di 

tempo ∆𝑡 nelle (3) è quello tra gli stessi due eventi in un riferimento diverso, cioè quello del 

laboratorio. Dalla (3 bis) i due tempi sono diversi: ∆𝑡  è maggiore di ∆𝜏 , semplicemente 

perché la velocità della luce è la stessa nei due riferimenti (principio 1) ma il tragitto 

percorso (confrontare le figg. 1 e 2) è diverso. Notiamo poi che se la velocità dell’orologio 

a luce è 𝑣′ ≠ 𝑣 e quindi la distanza LR nella fig. 2 cambia di conseguenza, chiamando ∆𝑥′ 

tale distanza e ripetendo i calcoli che hanno portato alle (3) , necessariamente con un 

nuovo (!) ∆𝑡′ , si ottiene ancora  

                                                  ∆𝜏 = √∆𝑡′2 −
∆𝑥′2

𝑐2    

La conclusione è che ∆𝜏 , intervallo di tempo tra i due eventi  segnato dall’orologio a luce, 

è lo stesso in tutti i sistemi di riferimento in moto relativo con velocità costante; si dice che 

è invariante per il cambiamento del sistema di riferimento (brevemente, che è un 

invariante) come lo è la velocità della luce nel vuoto. Possiamo misurare ∆𝜏 , che è legato 

a parametri oggettivi come la distanza ℎ e la velocità della luce, e leggerlo sul quadrante 

dell’orologio a luce come 𝑛
2ℎ

𝑐
 ; l’informazione può essere comunicata a qualunque altro 

laboratorio (riferimento) in moto rispetto all’orologio. Chiameremo l’invariante ∆𝜏 , il tempo 

segnato dall’orologio a luce, tempo proprio.   

Un’analogia molto interessante che si può brevemente illustrare è quella tra la geometria 

dello spazio-tempo, descritta dalla (3 bis), e la geometria euclidea: dati due punti A e B del 

piano euclideo, se ne può misurare la distanza ∆𝑙 = 𝐴𝐵̅̅ ̅̅  (la cui esistenza e unicità è 

garantita da opportuni assiomi) con l’apposito strumento (metro). Si può anche istituire un 

arbitrario sistema di riferimento Oxy in un piano contenente A e B e calcolare, date le 

coordinate cartesiane di 𝐴(𝑥𝐴, 𝑦𝐴)  e 𝐵(𝑥𝐵, 𝑦𝐵) , la distanza ∆𝑙 = 𝐴𝐵̅̅ ̅̅  con la ben nota 

formula  

                                             ∆𝑙 = √∆𝑥2 + ∆𝑦2                                             (4) 

con ∆𝑥 = 𝑥𝐵 − 𝑥𝐴  e  ∆𝑦 = 𝑦𝐵 − 𝑦𝐴 . Cambiando il sistema di coordinate, le coordinate 

cartesiane dei punti A e B cambiano ma ∆𝑙  non varia; vale ancora 

                                             ∆𝑙 = √∆𝑥′2 + ∆𝑦′2    

La distanza tra due punti ∆𝑙  (qui nel piano, cioè in due dimensioni)  è un invariante come 

lo è il tempo proprio ∆𝜏 nello spazio-tempo (anche qui in due dimensioni, cioè con una sola 

coordinata spaziale) ; la differenza essenziale sta nella presenza del segno meno nella  

(3bis) rispetto alla (4).  



Un ultimo sforzo di generalizzazione della formula (3 bis) è fondamentale per la fisica che 

vogliamo incontrare nel prossimo futuro: se 𝑣  è la velocità dell’orologio a luce (vedi ancora 

la fig. 2) , sarà ∆𝑥 = 𝑣∆𝑡   da cui, sostituendo nella (3 bis) si ottiene 

                                            ∆𝜏 = ∆𝑡 ∙ √1 −
𝑣2

𝑐2                                                 (5) 

da cui  

                                            ∆𝑡 =
∆𝜏

√1−
v2

c2
 

                                                           (6) 

Possiamo usare la (5) per lo studio del moto di una particella che si muove con velocità 𝑣 : 

il “suo”  tempo proprio ∆𝜏 è quello misurato da un orologio in quiete rispetto ad essa, o 

come si dice solidale con essa (diciamo il nostro orologio a luce, ma se non c’è, e 

ovviamente non c’è,  ce lo immaginiamo…) . E se la velocità della particella non è 

costante? Si può ancora usare la (5) in un intervallo di tempo 𝑑𝑡 centrato nel generico 

istante 𝑡 , abbastanza breve da poter considerare la velocità come costante (e uguale alla 

velocità istantanea 𝑣(𝑡) e sommare (integrare…) tutti i contributi. Si ottiene per il tempo 

proprio tra due eventi A e B : 

                                                ∆𝜏 = ∫ 𝑑𝑡√1 −
𝑣2(𝑡)

𝑐2

𝑡𝐵
𝑡𝐴

                                         (5 bis) 

Non useremo esplicitamente la (5 bis), ma la dovremo citare comunque  in una delle 

prossime applicazioni, che discuteremo nel mio prossimo intervento. 
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