1) Eventi nello spazio-tempo

Vogliamo studiare I'evoluzione di semplici sistemi fisici applicando i principi della teoria
della relativita. Lo faremo descrivendo sistemi che ci sono familiari fin dall’inizio del nostro
studio della fisica, come il moto di un treno in prossimita di una stazione ferroviaria, di un
aeroplano in un viaggio intercontinentale o di un’astronave in un viaggio interplanetario; ci
interessera introdurre anche sistemi la cui descrizione ha bisogno di elementi nuovi, come
ad esempio I'emissione e ricezione di un impulso luminoso o il moto di una particella
elementare instabile. Anche se ci aspettiamo differenze quantitative di comportamento tra i
primi tre casi elencati e gli ultimi due, legate come minimo ai diversi ordini di grandezza
delle velocita dei moti, vogliamo costruire una teoria che funzioni per ognuno dei cinque e
che comunque si riduca alla meccanica newtoniana, che gia conosciamo, per velocita del
sistema piccole rispetto a quella della luce.

Diamo ora il concetto di evento, su esempi concreti del tipo di quelli dell’elenco che
segue:

a )Transito di un dato treno nella stazione di Pontedera;

b )Atterraggio di un dato aereo di linea all’aeroporto di Fiumicino;

¢ ) impatto di una navicella spaziale sulla superficie lunare;

d ) emissione di un impulso luminoso da una data sorgente nel nostro laboratorio;

e ) rivelazione di un muone generato nell’alta atmosfera per collisione di raggi cosmici
da parte di un rivelatore del dipartimento di fisica dell’'universita di Pisa.

Per descrivere ognuna di queste situazioni concrete “elementari’ , che chiameremo
evento (attenzione: il significato del termine & qui completamente diverso da quello usato
in teoria della probabilita!), occorreranno due dati: il punto dello spazio fisico e I'istante
associati ad essa. In realta abbiamo gia una certa familiarita con il concetto di evento
appena definito: nello studio del moto rettilineo di un punto materiale, abbiamo usato i
grafici posizione-tempo, nei quali ogni punto P del grafico corrisponde per I'appunto ad un
evento, cioé P(t;x) con t istante e x posizione del punto materiale in quell’istante. In
relativita si preferisce per un moto rettilineo invertire le coordinate, per cui descriveremo un
evento, o come si dice un punto dello spazio-tempo P(x;t) , usando un riferimento
cartesiano x —t come in figura:




Inizieremo il nostro studio enunciando un postulato fondamentale che chiameremo per

comodita “principio 1”: “La velocita della luce nel vuoto ha lo stesso valore in tutti i sistemi
di riferimento in moto relativo con vettore velocita costante”.

Indicheremo con ¢ il modulo della velocita della luce nel vuoto, che vale con ottima
approssimazione ¢ = 3.0 - 108 m/s e che per il principio appena enunciato € una delle
costanti fondamentali della fisica.

Questo postulato, enunciato da Einstein nel 1905 , e in contraddizione palese con la nota

legge di composizione delle velocita, per la quale, se V & la velocita di un riferimento S’
rispetto al riferimento Se v e ¥ 'sono le rispettive velocitain Se S’ si ha

D=9 +V 1)

Si avrebbe infatti, se nella (1) v € la velocita della luce nel riferimento S, ¥ = v’ per il

principiole v = v + V che & falsa perché per ipotesi V # 0 . Chiaramente dovremo
decidere se cambiare la (1), cioé di fatto la meccanica newtoniana, o il principio 1 : per ora
continuiamo ad applicare quest’ultimo senza preoccuparci della (1) , ne riparleremo al
momento opportuno.

2 ) Orologio aluce e tempo proprio

Si consideri il sistema fisico schematizzato in fig. 1, che chiameremo orologio a luce: una
sorgente (puntiforme ) L che emette un segnale luminoso in direzione ortogonale a uno
specchio S a distanza h da L. Lo specchio riflette il segnale fino a un rivelatore R posto
nelle immediate vicinanze di L, come in fig. 1, che puo trasmettere istantaneamente a L il
comando per I'emissione di un nuovo segnale e far funzionare cosi il nostro sistema per
un tempo arbitrario.

Fig. 1




L’intervallo di tempo tra emissione e rivelazione di un segnale, che chiameremo At , vale:

2h
At = T (2)

Osserviamo che At € lintervallo di tempo tra i due eventi “emissione del segnale” e
“ricezione del segnale” misurato nel sistema di riferimento (o piu brevemente riferimento,
termine preferito dai fisici) in cui I'orologio a luce € in quiete, o come si dice nel sistema
di quiete dell'orologio a luce. Se il sistema dispone di un congegno che conta i comandi di
emissione del segnale successivo, I'orologio a luce puo effettivamente funzionare da
orologio: l'intervallo di tempo segnato dall’'orologio a partire dall'istante (e dall’evento) della
prima emissione &€ nAt se vengono contati n comandi; At funge cosi da “unita di tempo”
del nostro “orologio digitale”.

Supponiamo ora che I'orologio a luce si muova con velocita v (diretta verso destra come
in fig.2) rispetto al nostro laboratorio:

Fig. 2
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Il percorso LSR, che in fig. 1 era quello “andata e ritorno”, & ora nel riferimento

del laboratorio formato da due segmenti, trasversali e non verticali, come in fig.2: la
distanza complessiva percorsa dalla luce, per il principio 1 , vale cAt, dove At e il tempo
complessivo emissione-ricezione. Ma applicando il teorema di Pitagora si ottiene
banalmente usando la (2):
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cAt =2 /hz + (Az—") = Vc2A7Z + Ax2 3)

da cui



At = /Atz s (3 bis)

Notiamo un fatto del tutto nuovo: I'intervallo di tempo At € quello tra i due eventi emissione
del segnale-ricezione del segnale nel riferimento di quiete dell’orologio a luce; l'intervallo di
tempo At nelle (3) e quello tra gli stessi due eventi in un riferimento diverso, cioé quello del
laboratorio. Dalla (3 bis) i due tempi sono diversi: At & maggiore di At , semplicemente
perché la velocita della luce é la stessa nei due riferimenti (principio 1) ma il tragitto
percorso (confrontare le figg. 1 e 2) & diverso. Notiamo poi che se la velocita dell’orologio
aluce e v' # v e quindi la distanza LR nella fig. 2 cambia di conseguenza, chiamando Ax’
tale distanza e ripetendo i calcoli che hanno portato alle (3) , necessariamente con un
nuovo (!) At’, si ottiene ancora

_ ’ / Axr?
At = Atz_c_z

La conclusione e che At , intervallo di tempo tra i due eventi segnato dall’orologio a luce,
e lo stesso in tutti i sistemi di riferimento in moto relativo con velocita costante; si dice che
e invariante per il cambiamento del sistema di riferimento (brevemente, che & un
invariante) come lo € la velocita della luce nel vuoto. Possiamo misurare At , che e legato
a parametri oggettivi come la distanza h e la velocita della luce, e leggerlo sul quadrante

y . 2h . . N .
dell’orologio a luce come n—; I'informazione pud essere comunicata a qualunque altro

laboratorio (riferimento) in moto rispetto all’orologio. Chiameremo l'invariante At , il tempo
segnato dall’orologio a luce, tempo proprio.

Un’analogia molto interessante che si pud brevemente illustrare &€ quella tra la geometria
dello spazio-tempo, descritta dalla (3 bis), e la geometria euclidea: dati due punti A e B del
piano euclideo, se ne pud misurare la distanza Al = AB (la cui esistenza e unicita &
garantita da opportuni assiomi) con I'apposito strumento (metro). Si pud anche istituire un
arbitrario sistema di riferimento Oxy in un piano contenente A e B e calcolare, date le
coordinate cartesiane di A(x,,y4) e B(xg,yg) , ladistanza Al = AB con la ben nota
formula

Al = \/Ax? + Ay? (4)

con Ax = xz — x4, € Ay =yz —y, . Cambiando il sistema di coordinate, le coordinate
cartesiane dei punti A e B cambiano ma Al non varia; vale ancora

Al = \/Ax'? + Ay'?

La distanza tra due punti Al (qui nel piano, cioé in due dimensioni) e un invariante come
lo e il tempo proprio At nello spazio-tempo (anche qui in due dimensioni, cioe con una sola
coordinata spaziale) ; la differenza essenziale sta nella presenza del segno meno nella
(3bis) rispetto alla (4).



Un ultimo sforzo di generalizzazione della formula (3 bis) & fondamentale per la fisica che
vogliamo incontrare nel prossimo futuro: se v € la velocita dell’'orologio a luce (vedi ancora
la fig. 2) , sara Ax = vAt da cui, sostituendo nella (3 bis) si ottiene

Ar=At- [1-2 (5)

CZ
da cui

At = -2 (6)
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v
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Possiamo usare la (5) per lo studio del moto di una particella che si muove con velocita v :
il “suo” tempo proprio At € quello misurato da un orologio in quiete rispetto ad essa, 0
come si dice solidale con essa (diciamo il nostro orologio a luce, ma se non c’e, e
ovviamente non c’é, ce lo immaginiamo...) . E se la velocita della particella non &
costante? Si puo ancora usare la (5) in un intervallo di tempo dt centrato nel generico
istante t , abbastanza breve da poter considerare la velocitd come costante (e uguale alla
velocita istantanea v(t) e sommare (integrare...) tutti i contributi. Si ottiene per il tempo

proprio tra due eventiAe B :
At = [t /1 o (5 bis)

Non useremo esplicitamente la (5 bis), ma la dovremo citare comunque in una delle
prossime applicazioni, che discuteremo nel mio prossimo intervento.
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