
                         Tre applicazioni del concetto di tempo proprio 

 

a)  La rivelazione dei muoni 

Una particella instabile può decadere secondo la legge del decadimento esponenziale, 

con le modalità di seguito brevemente descritte. Se  una certa regione di spazio contiene 

ad un dato istante 𝑁0 particelle instabili, tutte praticamente immobili in un dato riferimento, 

detto 𝑡 = 0 tale istante in quel riferimento (sistema di quiete delle particelle) , l’evoluzione 

temporale delle 𝑁0 particelle  ha la legge seguente: 

                                                      𝑁(𝑡) = 𝑁0 ∙ 𝑒−
𝑡

𝜏                                                 (1) 

con 𝜏  costante positiva detta vita media della particella.  

Fatta questa premessa, discutiamo il comportamento di particelle elementari dette muoni, 

teorizzate verso la metà degli anni  ‘30 e studiate sperimentalmente negli anni  successivi. 

Il muone è una particella con proprietà del tutto simili a quelle dell’elettrone ma ha una 

massa circa 100 volte superiore e soprattutto, a differenza dell’elettrone, è una particella 

instabile con vita media 𝜏 = 2.2 ∙ 10−6𝑠 . Sono prodotti  muoni dall’interazione tra raggi 

cosmici (principalmente protoni di alta energia) e nuclei di molecole presenti nell’atmosfera 

terrestre; i muoni prodotti hanno velocità molto vicine a quella della luce.  

Discutiamo la possibilità di rivelare in un laboratorio terrestre muoni prodotti dai raggi 

cosmici, cioè generati nell’alta atmosfera a distanza diciamo 𝑑 ≅ 104 𝑚 dalla crosta 

terrestre. La loro velocità vale  𝑣𝜇 = 0.9994𝑐 ; in un riferimento solidale ad un laboratorio 

terrestre l’intervallo di tempo tra la generazione di un muone e la sua rivelazione (che 

possiamo chiamare tempo di volo) vale ∆𝑡 =
𝑑

𝑣𝜇
≅ 3 ∙ 10−5 𝑠 . Usando questo ultimo 

risultato e la (1) si otterrebbe una percentuale di muoni giunti a terra del tutto trascurabile   

( 
𝑁

𝑁0
≅ 𝑒−15 ) e sarebbe impossibile rivelare muoni. I muoni provenienti dall’alta atmosfera 

vengono invece rivelati agevolmente nei laboratori di  tutto il pianeta; ciò si spiega 

altrettanto agevolmente con il fatto che   𝜏  è la vita media di un muone nel suo sistema di 

quiete. Se infatti ∆𝑡 è un intervallo di tempo corrispondente al tempo di volo valutato nel 

sistema di riferimento del rivelatore alla superficie terrestre, il corrispondente tempo 

proprio del muone vale,  secondo la (5) del mio intervento precedente, che citerò spesso 

chiamandola ancora (5) e riscrivo: 

                                               ∆𝜏 = Δ𝑡 ∙ √1 −
𝑣2

𝑐2
                                                           (5)     

In questo caso allora  ∆𝜏 = ∆𝑡 ∙ √1 −
𝑣𝜇

2

𝑐2  e si ottiene qui ∆𝜏 ≅ 1.2 ∙ 10−6 𝑠 . La  percentuale 

di “muoni sopravvissuti” è quindi in realtà 𝑒−
∆𝜏

𝜏 ≅ 0.52 e ciò è in pieno accordo con quanto 

osservato, prima netta conferma da noi incontrata della teoria della relatività.  



b ) La “contrazione delle lunghezze” 

Consideriamo un sistema di riferimento S e una barra di lunghezza L in quiete in S come in 

figura:  

 

 

 

Dette A e B le estremità della barra, nel riferimento  S si ha  ovviamente 𝐴𝐵̅̅ ̅̅ = 𝐿 . Ho 

evidenziato nel disegno solo l’asse x per il  riferimento S  e ho disegnato la barra su 

quest’asse; vogliamo  discutere  se e  come varia la lunghezza di una  barra misurata in due 

riferimenti in moto relativo con vettore velocità  avente la direzione della barra. Vediamo ora 

cosa succede osservando le cose da un riferimento S’ avente vettore velocità 𝑣⃗ disposto 

lungo l’asse  x e verso scelto da sinistra verso destra come in figura; l’asse x’  è quindi 

sovrapponibile all’asse x, non ci sarà comunque qui bisogno di usare esplicitamente 

riferimenti cartesiani, non importa per esempio  di definirne le origini . Per fissare le idee, 

supponiamo ora che la barra AB sia il marciapiede di una stazione ferroviaria e quindi il 

riferimento S  sia in quiete rispetto alla stazione; il riferimento S’  si trova invece su un treno 

che sta viaggiando (e ovviamente attraversando la stazione) con velocità  𝑣⃗ (e  quindi 

modulo  𝑣 ) come in figura.  

Nel riferimento  S si compie la misura della lunghezza della barra misurando l’intervallo di 

tempo ∆𝑡 tra gli eventi “arrivo del treno in A” e “arrivo del treno in B”;  si ottiene  ∆𝑡 =
𝐿

𝑣
   da 

cui   𝐿 = 𝑣∆𝑡 . Osserviamo che  ∆𝑡 non è un tempo proprio, perché è misurato nel riferimento 

S usando due orologi differenti, uno posto all’inizio e uno alla fine del marciapiede. 

Il riferimento S’ vede la stazione avvicinarsi con velocità ancora di modulo  𝑣  e calcola  la 

lunghezza della barra, cioè del marciapiede,  che chiameremo L’,  misurando ancora 

l’intervallo di tempo tra i due eventi  “arrivo del treno in A” e “arrivo del treno in B”; qui il 

tempo misurato è un tempo proprio, perché misurato nella stessa posizione e dallo stesso 

orologio in S’. 

 Si ha dunque per la (5)  ∆𝜏 = Δ𝑡 ∙ √1 −
𝑣2

𝑐2  ma 𝐿′ = 𝑣∆𝜏  perché lo sperimentatore sul treno 

vede passare la barra con velocità di modulo 𝑣  , da cui  si ottiene subito  

                                              𝐿′ = 𝐿 ∙ √1 −
𝑣2

𝑐2                                                              (2) 

La (2) è la formula cercata ed esprime la cosiddetta contrazione delle lunghezze;  è 

chiamata così per ovvi motivi, infatti 𝐿′ < 𝐿 . 

E’ del tutto chiaro che la (2) è una diretta conseguenza della (5) , cioè del concetto di tempo 

proprio, che è in realtà il fulcro della teoria. Approfitto infine per utilizzare la (2) nel descrivere 

in modo formalmente diverso (ma del tutto equivalente) l’esperimento dei muoni: il muone, 

A B 

𝑣⃗ 



in moto come già visto con velocità 𝑣 = 0.9994𝑐 ,  deve percorrere la distanza tra il  punto 

in cui è “nato” (nell’alta atmosfera) e quello in cui è rivelato (a terra), cioè  diciamo 𝐿 = 10 𝐾𝑚 

. Il muone è l’equivalente dello sperimentatore in moto sul treno, con il proprio orologio 

“biologico” che smette (in media) di funzionare dopo un tempo 𝜏 = 2.2 𝜇𝑠 dalla sua 

generazione causa  decadimento della particella. Per il muone però la distanza percorsa è 

quella “contratta” data dalla (2) , cioè 𝐿′ = 𝐿 ∙ √1 −
𝑣2

𝑐2 ;  la velocità della Terra che gli va 

incontro ha modulo 𝑣 = 0.9994𝑐  e l’intervallo di  tempo da lui misurato è quindi  
𝐿′

𝑣
  che con 

i dati qui utilizzati vale ancora ovviamente  1.2 ∙ 10−6𝑠 .  

c) Il “paradosso dei gemelli” 

Supponiamo di avere un’astronave costruita per lunghi viaggi nello spazio, con un pilota V 

(V sta per “viaggiatore”) e soprattutto un orologio (diciamo il nostro orologio a luce) 

funzionante all’interno dell’astronave. Supponiamo che V parta da una base spaziale posta 

in un punto O della superficie terrestre per compiere un viaggio con velocità 𝑣⃗ costante (in 

realtà ci sarà la solita fase di accelerazione, che trascureremo) percorrendo una distanza 

𝑑 , per arrivare a un dato punto 𝑃 del sistema solare a distanza dell’ordine di quella terra-

sole (diciamo 𝑑 = 1 ∙ 1011 𝑚 . Nella base spaziale il controllore di volo C (C sta per 

“controllore”) , fratello gemello di V , dispone di un orologio identico a quello sull’astronave, 

che sincronizza con quello di V all’istante della partenza per il viaggio. Raggiunto il punto P  

l’astronave inverte immediatamente il moto (anche qui trascuriamo tutte le fasi di 

accelerazione) tornando alla base con velocità  −𝑣⃗. Descriviamo i viaggi nello spazio-tempo 

di C e V tracciandone i due grafici posizione-tempo (vedi fig. 1): 

 

                             

 

 

 

 

 

  

Il segmento verticale OO’ rappresenta il viaggio nello spazio-tempo di C , il segmento OP il 

viaggio di andata di V e il segmento PO’ il viaggio di ritorno di V  Sappiamo che sia 

l’orologio di C che quello di V segnano il tempo proprio del loro viaggio nello spazio-tempo 

da O a O’ : per l’orologio di C  il viaggio andata-ritorno è durato ∆𝜏𝐶 =
2𝑑

𝑣
  e per l’orologio di 
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V è durato per la (5)  ∆𝜏𝑉 =
2𝑑

𝑣
√1 −

𝑣2

𝑐2
  .(avremmo dovuto usare la (5 bis) del precedente 

intervento: ∆𝜏 = ∫ 𝑑𝑡√1 −
𝑣2(𝑡)

𝑐2

𝑡𝐵

𝑡𝐴
    ma stiamo trascurando tutte le accelerazioni).  

Dalle due formule si vede chiaramente che ∆𝜏𝐶 > ∆𝜏𝑉 , cioè il tempo segnato dal gemello 

controllore di volo è maggiore di quello segnato dal gemello viaggiatore; la differenza tra i 

due intervalli di tempo e anche il loro ordine di grandezza dipendono dal modulo  𝑣 

della velocità rispetto a 𝑐 . Un’astronave con equipaggio umano può raggiungere i 104𝑚/𝑠;  

∆𝜏𝐶 può valere quindi usando questi numeri 
2∙1011

104 = 2 ∙ 107𝑠 ≅ 231 𝑔𝑔. . Il fattore  √1 −
𝑣2

𝑐2  

qui è molto vicino a 1; calcolando ∆𝜏𝑉   si ottiene (provate con la calcolatrice tascabile) un 

valore minore di quello di ∆𝜏𝐶 di circa 10−2𝑠 ; il gemello C è “invecchiato” rispetto al 

gemello V di un centesimo di secondo in un viaggio dell’ordine di un anno…! In realtà in un 

viaggio interplanetario come questo, correzioni per la (5 bis) a parte, intervengono effetti 

quantitativamente più importanti considerando anche l’applicazione della teoria ai campi 

gravitazionali (relatività generale). 

Concludendo, se il viaggio fosse stato compiuto invece a velocità dell’ordine di 𝑐  avrebbe 

potuto essere più breve (la luce per fare il tragitto terra-sole ci mette 8 minuti…) e la 

differenza relativa tra i due tempi molto maggiore, in quanto il fattore √1 −
𝑣2

𝑐2   può essere 

nettamente diverso da 1 ; il fatto è che possiamo mandare muoni a velocità dell’ordine di 

quella della luce, anzi ci pensano da soli, ma è per ora prematuro mandarci esseri umani. 
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