Ultimo contributo di fisica moderna a “ll sillabario”

Invio questi ultimi appunti di fisica quantistica: mi occupo brevemente di fornire almeno un
cenno di impostazione formale degli assiomi della meccanica quantistica non relativistica,
cioé riguardante le proprieta dei corpi in moto con velocita v «< ¢, con ¢ velocita della luce.
La teoria quantistica relativistica, cioé per corpi a velocita dell’'ordine di quella della luce,
proprio non la conosco; & formalmente ancora pitu complicata di quella non relativistica e
alluniversita non ho frequentato corsi che la trattavano in modo sistematico; per cosi dire,
la teoria non relativistica “mi basta e mi avanza”...Spero che questi appunti non vi appaiano
troppo oscuri, in caso contrario mi scuserete ma non mi é riuscito di togliere niente di quello
che ho scritto, pena un lavoro ancora piu incomprensibile di questo. Buona lettura!

1) Stati di un sistema e rappresentazione di Schrodinger

Y

La Meccanica Quantistica € governata da un sistema di assiomi che descrivono il
comportamento di un sistema fisico microscopico, ad esempio un elettrone libero o soggetto
ad un campo elettrico come nel caso dell’elettrone dell’atomo di idrogeno nel campo elettrico
del protone; tali assiomi definiscono gli stati fisici del sistema e la loro evoluzione temporale.

Nella meccanica classica, se ci riferiamo ad esempio ad una singola particella in interazione,
il suo stato fisico (piu brevemente stato) a un dato istante t & rappresentato dal vettore
posizione 7(t). Come noto, per studiare il vettore posizione occorre applicare un insieme di
leggi (leggi di Newton, principi di conservazione) che permettono di ricavare 7(t) dalla
conoscenza di 7(0) e di %(0).

In Meccanica Quantistica la situazione € completamente diversa: gli stati possibili di un
sistema sono rappresentati dagli elementi di uno spazio vettoriale dotato di prodotto scalare
(che chiameremo appunto spazio dei vettori di stato) e ogni grandezza fisica e
rappresentata da un operatore che agisce sui vettori di stato, in modo da ottenere i possibili
valori delle grandezze fisiche a cui 'operatore & associato (chiarird meglio cosa intendo con
guesto nel prossimo paragrafo).

Le possibili grandezze fisiche che si possono costruire (che chiameremo osservabili), per
esempio per una particella in interazione, sono quelle della meccanica classica (su tutte
I'energia, che sara l'unica su cui potrd fare un discorso articolato in questi appunti). Ma ve
ne sono anche altre del tutto nuove, completamente “quantistiche”, come la parita o |l
momento angolare intrinseco (spin) di una particella; non ci potremo occupare ora di queste
ultime, come potete facilmente immaginare.

Finora tutto appare molto nebuloso (per usare un eufemismo...); per fortuna la meccanica
guantistica consente percorsi non troppo complicati per parlare di vettori di stato e
osservabili, in particolare I'osservabile energia (che come gia detto sara l'unica che
tratteremo con un minimo di articolazione). Gli assiomi della teoria (sui quali non mi posso
soffermare, dovete fidarvi...) consentono vari modi di descrivere vettori e osservabili, detti
rappresentazioni; nella rappresentazione che useremo, detta rappresentazione di
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Schrodinger, per una particella un vettore di stato € una funzione a valori complessi della
posizione e del tempo, indicata con W(#,t) e detta funzione d’onda della particella.

Una proprieta fondamentale della funzione d’onda di una particella € legata all’informazione
sulla probabilita di individuare la posizione della particella in una data zona dello spazio a
un certo istante; per I'esattezza la probabilita che la particella occupi a un dato istante t un
volumetto infinitesimo dxdydz centrato in un punto P, vale:

dP = |Y(7,,t)|*dxdydz (1.1)

In altre parole |y(7,,t)|? € la densita di probabilita di individuare la posizione della
particella nello spazio . Per poter chiarire 'uso della (1.1) , occorre costruire funzioni d’onda
in situazioni concrete; lo faremo in due casi significativi.

2) Stati stazionari e equazione di Schrodinger

Consideriamo una particella (elettrone) immersa in un campo conservativo ad un istante
fissato, diciamo t = 0 . Applicando i principi della teoria, si possono definire particolari stati,
detti stati stazionari, e quindi particolari funzioni d'onda W(#,t) , nei quali 'energia E del
sistema non dipende dal tempo; tali stati corrispondono in meccanica classica a quelli in cui
vale la legge di conservazione dell’energia (particella libera o in un campo conservativo). In
uno stato stazionario con energia E la funzione d’onda si puo scrivere:

Y t) = P(7) - et (2.1)

E - . . . .
con w =— e con Y(r) funzione a valori complessi che rappresenta lo stato del sistema

allistante t = 0 . Faccio notare che dalla (2.1) la densita di probabilita di individuare la
posizione della particella € indipendente dal tempo. Resta da capire come sia possibile
individuare i possibili valori di E ; imponiamo che siano numeri reali e, da quanto imparato
sull’atomo di Bohr, ci si pud aspettare per un dato sistema fisico anche valori discreti e non
solo continui come quelli della fisica classica.

In realta la Meccanica Quantistica fissa i valori possibili E dell’energia di una particella in
un’equazione fondamentale, detta equazione di Schrodinger , che contiene come incognite
le funzioni (¥ e le cui soluzioni, dette autofunzioni dellosservabile energia,
corrisponderanno ognuna a un possibile valore E assunto dall’energia della particella, detto
autovalore. L’ equazione di Schrodinger ha la forma seguente:
R R GRIG R ) (2.2)
2m \9x2 = dy? = 9z2 ’

Come si vede la (2.2) € in generale un’equazione differenziale non ordinaria ma alle

derivate parziali; qui la grandezza U(#) e la funzione che esprime I'energia potenziale in

meccanica classica, ad esempio per I'elettrone nel campo elettrico di un protone (atomo di

idrogeno) U(¥) = —k'Tez , per la particella libera U(#) =0 etc....



La (2.2) puo apparire una “ricetta” un po’ bislacca ma é coerentemente inquadrata nel
sistema di assiomi della teoria; € ormai da piu di 90 anni il riferimento principale per
interpretare un numero enorme di fatti sperimentali relativi a sistemi fisici microscopici in
moto con velocitd v «< ¢ , cioé in sostanza tutti gli atomi e le molecole che ci circondano (e

anche quelli di cui siamo costituiti...).

3) Due applicazioni.
3a Particellalibera

Per una patrticella libera (per fissare le idee, un elettrone di massa m) la (2.2) diventa:

2 2 2 2

—j—m(%+37f+%)=E-¢(F) (3.1)

Dobbiamo risolvere la (3.1), per cominciare a trovare le prime (e le piu semplici) funzioni
d’onda. Possiamo pensare a una preparazione di stati della particella in cui la direzione del
moto e prefissata: ad esempio, selezioniamo gli elettroni emessi da un filamento riscaldato
con un sistema (lo chiameremo collimatore) che selezioni una ben precisa direzione del
moto degli elettroni, che chiameremo al solito asse x. In Ottica succede spesso la stessa
cosa selezionando da una sorgente di piccole dimensioni un fascio luminoso di direzione
definita, ad esempio con un sistema di lenti convergenti. Con questa operazione preliminare
potremo supporre che la funzione d’onda dipenda solo dalla coordinata x , cioé si riduca
alla forma y(x) . Le derivate parziali rispetto ay e z si annullano e possiamo scrivere piu
semplicemente la (4), ricominciando a usare i familiari apici nella derivazione:

— L) = B p(x) (32)

Ricordiamo che ¥(x) € in generale una funzione a valori nell'insieme C dei numeri complessi
; i possibili autovalori dell’osservabile energia della particella libera sono (ragionevolmente)
collegati dall'impianto teorico della Meccanica Quantistica a quelli dell’osservabile velocita,
oppure (che & quasi lo stesso ma preferibile) a quelli dellosservabile impulso, che nella
nostra approssimazione non relativistica vale p = mv. Qui non ho usato vettori perché
adopero solo una componente essendo nel caso unidimensionale. Per gli autovalori E
dell’osservabile energia, dato che per la particella libera € tutta cinetica, qui sono tali che
E > 0 ; essi sono legati agli autovalori dell’osservabile impulso dalla nota relazione:

E = j—m (3.3)
Con la (3.3) la (3.2) diventa:
P'(x) +k?-yP(x) =0 (3.4)
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con k% = 2;;'5 =5 (3.5)

Vediamo dove ci porta questa equazione. Si puo dimostrar che la soluzione generale €,

ponendo dalla (3.5) k =% con p autovalore positivo dellimpulso e con A e B costanti

complesse:
Y(x) =A-e** + B - g ikx (3.6)

Possiamo ottenere la funzione d’onda della particella libera al generico istante t sostituendo
la (3.6) nella (3.1):

W(x,t) = A-etkx~0t  B. g-tkx-wt (3.7

Analizziamo ciascuno degli addendi della (3.7): il primo rappresenta un’onda piana che si
propaga nel verso positivo dell’assa x , il secondo ancora un’onda piana che si propaga nel
verso negativo. Se il nostro sistema di selezione del moto della particella, oltre alla direzione,
consente di scegliere anche il verso del moto (in genere il nostro collimatore lo fa in modo
“automatico”, vedi esperienza di Davisson e Germer), possiamo considerare un unico
addendo, diciamo il primo, ottenendo un’onda “complessa” (di cui la parte reale o la parte
immaginaria corrispondono al tipo di onde che conosciamo) che si propaga nel verso
positivo dell’asse x:

W(x,t) = A-etkx-wt (3.7bis)
Dato che per un’onda armonica 1 = 27” dalla (3.5) scopriamo che

h
A=2 (3.8)

L’onda ipotizzata da De Broglie per I'elettrone € semplicemente (per modo di dire...) la
funzione d’onda per la particella libera.

Osserviamo un fatto interessante, uno dei tanti decisamente sconvolgenti generati dalla
teoria: la probabilita di individuare la posizione dell’elettrone € la stessa in tutti i punti, infatti
|W(x,t)|? della (3.7bis) & indipendente da x oltre che dal tempo. Cio & in realta del tutto
coerente con la teoria: dipende dal fatto che la (3.7bis) & un’autofunzione dell'impulso, cioé
limpulso ha un valore p=hk determinato; uno dei piu noti risultati della Meccanica
Quantistica (la cosiddetta relazione, o principio, di indeterminazione) afferma che allora la
posizione deve essere completamente indeterminata. Non posso parlare di questo ora, Ci
vogliono troppi elementi da chiarire e ritengo che non sia il caso.

3 b : L’atomo di idrogeno

Per I'atomo di idrogeno I'equazione di Schrodinger (2.2) si scrive:



_E%&h£@+ﬁg_k§25¢@) (3.9)

2m \ 9x2 dy? d0z2

Questa equazione € molto piu complicata da risolvere di quella della particella libera; come
. . . . . . . N k-e? . ..
si puo intuire, la simmetria della funzione U(r) = —Te suggerisce di risolverla usando

il corrispondente tridimensionale delle coordinate polari nel piano, con la variabile » e i due
angoli corrispondenti alla latitudine e longitudine come sulla superficie terrestre. Utilizzando
un formalismo molto raffinato, che non e assolutamente alla nostra portata, sono stati
calcolati (Schrodinger propose questa equazione nel 1925) autofunzioni e autovalori della
(3.9) ottenendo come risultato per i possibili autovalori dell’energia proprio quelli di Bohr(!):

E,=-2 (3.10)

n2

con R, = 13,6 eV costante di Rydberg. Gli autovalori dell'energia sono qui descritti da un
solo numero intero, detto numero quantico principale, che ¢ il solito numero naturale n >
1; le autofunzioni sono qui la grossa novita, dato che nella teoria di Bohr gli stati dell’elettrone
erano le traiettorie del suo moto circolare uniforme.

Le soluzioni della (3.9) sono descritte da tre numeri quantici:
1) il numero quantico principale n appena (re)introdotto;
2 ) per ogni fissato n , ci sono n possibili numeri quantici detti [ di valori
[=01..,n—-1
3) per ogni fissato [ , ci sono 2! + 1 numeri quantici detti m,; di valori
m=-1,—-(1-1),..,01,..(l—1),1

Ogni soluzione della (3.9) si puo descrivere dunque in termini della terna (n,1,m;).

, . - A - . Ry
Nell’atomo di idrogeno per ogni fissato n , e quindi per ogni fissata energia E,, = ——
abbiamo, come si puo faciimente verificare, n? autofunzioni distinte; solo il livello

fondamentale, con n = 1, € non degenere, tutti gli altri lo sono (ad. es. per n = 10 ci sono
100 autofunzioni con quell’energial).

Come il numero quantico n € associato all'osservabile energia e alla sua conservazione nel
sistema atomo di idrogeno, la struttura della meccanica quantistica associa i numeri quantici
[ e m; rispettivamente alle osservabili seguenti, associate al momento angolare L
dell’elettrone e alla loro conservazione: quadrato del momento angolare I?e componente
L, di L . Queste due osservabili sono entrambe misurabili simultaneamente tra loro e
all’energia (osservabili compatibili) e le nostre autofunzioni hanno contemporaneamente le
tre grandezze con valore determinato; la cosa non & scontata ed e una peculiarita della
teoria, c’@ un esempio famoso di coppia di osservabili non compatibili che sono la posizione
e I'impulso di una particella quantistica. Per I'esattezza, gli autovalori dell’osservabile I? e
L, sono rispettivamente:



[2=h%-1(l+1) (3.11)
L,=h-m (3.12)

In conclusione non posso fare a meno di scrivere la soluzione della (3.9) corrispondente al
livello fondamentale, che come gia detto € 'unico non degenere, cioé n=1,l =m; = 0:

r

Y100 = : s e @ (3.13)

\/E'aoz

con a, raggio di Bohr; lafunzione ha simmetria sferica e questo € compatibile con il valore
nullo del momento angolare di quello stato.

Giorgio Cellai, docente di matematica e fisica all'l.l.S. “G. Carducci” Volterra.



