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Ultimo contributo di fisica moderna a “Il sillabario” 

Invio questi  ultimi appunti di fisica quantistica: mi occupo brevemente di fornire almeno un 

cenno di impostazione formale degli assiomi della meccanica quantistica non relativistica, 

cioè riguardante le proprietà dei corpi in moto con  velocità 𝑣 ≪ 𝑐 , con 𝑐 velocità della luce. 

La teoria quantistica relativistica, cioè per corpi a velocità dell’ordine di quella della luce, 

proprio non la conosco; è formalmente ancora più complicata di quella non relativistica e  

all’università non ho frequentato corsi che la trattavano in modo sistematico; per così dire, 

la teoria non relativistica “mi basta e mi avanza”…Spero che questi appunti non vi appaiano 

troppo oscuri, in caso contrario mi scuserete ma non mi è riuscito di togliere niente di quello 

che ho scritto, pena un lavoro ancora più incomprensibile di questo. Buona lettura!   

1) Stati di un sistema e rappresentazione di SchrÖdinger  

La Meccanica Quantistica è governata da un sistema di assiomi che descrivono il 

comportamento di un sistema fisico microscopico, ad esempio un elettrone libero o soggetto 

ad un campo elettrico come nel caso dell’elettrone dell’atomo di idrogeno nel campo elettrico 

del protone; tali assiomi definiscono gli stati fisici del sistema e la loro evoluzione temporale.  

Nella meccanica classica, se ci riferiamo ad esempio ad una singola particella in interazione, 

il suo stato fisico (più brevemente stato) a un dato istante 𝑡 è rappresentato dal vettore 

posizione 𝑟(𝑡).  Come noto, per studiare il vettore posizione occorre applicare un insieme di 

leggi (leggi di Newton, principi di conservazione) che permettono di ricavare 𝑟(𝑡) dalla 

conoscenza di 𝑟(0) e di 𝑣⃗(0).  

In Meccanica Quantistica la situazione è completamente diversa: gli stati possibili di un 

sistema sono rappresentati dagli elementi di uno spazio vettoriale dotato di prodotto scalare 

(che chiameremo appunto spazio dei vettori di stato) e ogni grandezza fisica è 

rappresentata da un operatore che agisce sui vettori di stato, in modo da ottenere i possibili 

valori delle grandezze fisiche a cui l’operatore è associato (chiarirò meglio cosa intendo con 

questo nel prossimo paragrafo).  

Le possibili grandezze fisiche che si possono costruire (che chiameremo osservabili), per 

esempio per una particella in interazione, sono  quelle della meccanica classica (su tutte 

l’energia, che sarà l’unica su cui potrò fare un discorso articolato in questi appunti). Ma ve 

ne sono anche altre del tutto nuove, completamente “quantistiche”, come la parità o il 

momento angolare intrinseco (spin) di una particella; non ci  potremo occupare ora di queste 

ultime, come potete facilmente  immaginare.  

Finora tutto appare molto nebuloso (per usare un eufemismo…); per fortuna la meccanica 

quantistica consente percorsi non troppo complicati per parlare di vettori di stato e 

osservabili, in particolare l’osservabile energia (che come già detto sarà l’unica che 

tratteremo con un minimo di articolazione). Gli assiomi della teoria (sui quali non mi posso 

soffermare, dovete fidarvi…) consentono vari modi di descrivere vettori e osservabili, detti 

rappresentazioni; nella rappresentazione che useremo, detta rappresentazione di 
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SchrÖdinger,  per una particella un vettore di stato è una  funzione a valori complessi della 

posizione e del tempo, indicata con  Ψ(𝑟, 𝑡) e  detta funzione d’onda  della particella. 

Una proprietà fondamentale della funzione d’onda di una particella è legata all’informazione 

sulla probabilità di individuare la posizione della particella in una data zona dello spazio a 

un certo istante; per l’esattezza la probabilità che la particella occupi a un dato istante  𝑡  un 

volumetto infinitesimo  𝑑𝑥𝑑𝑦𝑑𝑧  centrato in un punto  𝑃0 vale: 

                                                    𝑑𝑃 = |𝜓(𝑟0⃗⃗⃗⃗ , 𝑡)|2𝑑𝑥𝑑𝑦𝑑𝑧                                              (1.1) 

In altre parole  |𝜓(𝑟0⃗⃗⃗⃗ , 𝑡)|2 è la densità di probabilità di individuare la posizione della 

particella nello spazio . Per poter chiarire l’uso della (1.1) , occorre costruire funzioni d’onda 

in situazioni concrete; lo faremo in due casi  significativi. 

2)  Stati stazionari e equazione di SchrÖdinger 

Consideriamo una particella (elettrone) immersa  in un campo conservativo ad un istante 

fissato, diciamo 𝑡 = 0 . Applicando i principi della teoria, si possono definire particolari stati, 

detti stati stazionari, e quindi particolari funzioni d’onda  Ψ(𝑟, 𝑡) , nei quali l’energia  𝐸 del 

sistema non dipende dal tempo; tali stati corrispondono in meccanica classica a quelli in cui 

vale la legge di conservazione dell’energia (particella libera o in un campo conservativo). In 

uno stato stazionario con energia  𝐸 la funzione d’onda si può scrivere: 

                                                  Ψ(𝑟, 𝑡) = 𝜓(𝑟) ∙ 𝑒−𝑖𝜔𝑡                                       (2.1) 

con  𝜔 =
𝐸

ℏ
  e con  𝜓(𝑟)  funzione a valori complessi che rappresenta lo stato del sistema 

all’istante  𝑡 = 0 . Faccio notare che dalla (2.1) la densità di probabilità di individuare la 

posizione della particella è indipendente dal tempo. Resta da capire come sia possibile 

individuare  i possibili valori di  𝐸 ; imponiamo che siano numeri reali e,  da quanto imparato 

sull’atomo di Bohr, ci si può aspettare per un dato sistema fisico anche valori discreti  e non 

solo continui come quelli della fisica classica. 

In realtà  la Meccanica Quantistica fissa i valori possibili 𝐸 dell’energia di una particella  in 

un’equazione fondamentale, detta equazione di SchrÖdinger , che contiene come incognite 

le funzioni  𝜓(𝑟)   e le cui soluzioni, dette autofunzioni dell’osservabile energia, 

corrisponderanno ognuna a un possibile valore 𝐸 assunto  dall’energia della particella, detto 

autovalore. L’ equazione di SchrÖdinger  ha la forma seguente: 

                                   −
ℏ2

2𝑚
(

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
) + 𝑈(𝑟) ∙ 𝜓(𝑟) = 𝐸 ∙ 𝜓(𝑟)                   (2.2)               

Come si vede la (2.2) è in generale un’equazione differenziale non ordinaria ma alle 

derivate parziali; qui la grandezza  𝑈(𝑟)  è la funzione che esprime l’energia potenziale in 

meccanica classica, ad esempio per l’elettrone nel campo elettrico di un protone (atomo di 

idrogeno)  𝑈(𝑟) = −
𝑘∙𝑒2

𝑟
  , per la particella libera  𝑈(𝑟) = 0   etc… .   
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La (2.2) può apparire una “ricetta” un po’ bislacca ma  è coerentemente   inquadrata nel 

sistema di assiomi della teoria; è  ormai  da più di 90 anni il riferimento principale per 

interpretare un numero enorme di fatti sperimentali relativi a sistemi fisici microscopici in 

moto con velocità  𝑣 ≪ 𝑐  , cioè in sostanza tutti gli atomi e le molecole che ci circondano (e 

anche quelli di cui siamo costituiti...).  

 

3 ) Due applicazioni. 

3a   Particella libera 

Per una particella libera (per fissare le idee, un elettrone di massa 𝑚)  la  (2.2) diventa: 

                                −
ℏ2

2𝑚
(

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 +
𝜕2𝜓

𝜕𝑧2 ) = 𝐸 ∙ 𝜓(𝑟)                                (3.1)  

Dobbiamo risolvere la (3.1), per cominciare a trovare le prime (e le più semplici) funzioni 

d’onda. Possiamo pensare a una preparazione di stati della particella in cui la direzione del 

moto è prefissata: ad esempio, selezioniamo gli elettroni emessi da un filamento riscaldato 

con un sistema (lo chiameremo collimatore) che selezioni una ben precisa direzione del 

moto degli elettroni, che chiameremo al solito asse x. In Ottica succede spesso la stessa 

cosa selezionando da una sorgente di piccole dimensioni un fascio luminoso di direzione 

definita, ad esempio con un sistema di lenti convergenti. Con questa operazione preliminare 

potremo supporre che la funzione d’onda dipenda solo dalla coordinata  𝑥 , cioè si riduca 

alla forma  𝜓(𝑥) . Le derivate parziali rispetto a y e z  si annullano e possiamo scrivere più 

semplicemente la (4), ricominciando a usare i familiari apici nella derivazione: 

                                               −
ℏ2

2𝑚
𝜓′′(𝑥) = 𝐸 ∙ 𝜓(𝑥)                                       (3.2) 

Ricordiamo che 𝜓(𝑥) è in generale una funzione a valori nell’insieme 𝐶 dei numeri complessi 

; i possibili autovalori dell’osservabile energia della particella libera sono (ragionevolmente) 

collegati dall’impianto teorico della Meccanica Quantistica a quelli dell’osservabile velocità, 

oppure (che è quasi lo stesso ma preferibile) a quelli dell’osservabile impulso, che nella 

nostra approssimazione non relativistica vale 𝑝 = 𝑚𝑣 .  Qui non ho usato vettori perché 

adopero solo una componente essendo nel caso unidimensionale. Per gli autovalori 𝐸 

dell’osservabile energia, dato che per la particella libera è tutta cinetica,  qui sono tali che 

𝐸 ≥ 0 ; essi sono legati agli autovalori dell’osservabile impulso dalla nota relazione: 

                                                                 𝐸 =
𝑝2

2𝑚
                                                (3.3) 

Con la (3.3) la (3.2) diventa: 

                                         

 

                                                 𝜓′′(𝑥) + 𝑘2 ∙ 𝜓(𝑥) = 0                                          (3.4) 
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con                                               𝑘2 =
2𝑚𝐸

ℏ2
=

𝑝2

ℏ2
                                                   (3.5) 

Vediamo dove ci porta questa equazione. Si può dimostrar che la soluzione generale  è, 

ponendo dalla (3.5)  𝑘 =
𝑝

ℏ
   con 𝑝  autovalore  positivo dell’impulso e con 𝐴 e 𝐵 costanti 

complesse: 

                                            𝜓(𝑥) = 𝐴 ∙ 𝑒𝑖𝑘𝑥 + 𝐵 ∙ 𝑒−𝑖𝑘𝑥                                          (3.6) 

Possiamo ottenere la funzione d’onda della particella libera al generico istante 𝑡  sostituendo 

la (3.6) nella (3.1): 

                                      Ψ(𝑥, 𝑡) = 𝐴 ∙ 𝑒𝑖𝑘𝑥−𝜔𝑡 + 𝐵 ∙ 𝑒−𝑖𝑘𝑥−𝜔𝑡                                    (3.7) 

Analizziamo ciascuno degli addendi della (3.7): il primo rappresenta un’onda piana che si 

propaga nel verso positivo dell’assa x , il secondo ancora un’onda piana che si propaga nel 

verso negativo. Se il nostro sistema di selezione del moto della particella, oltre alla direzione, 

consente di scegliere anche il verso del moto (in genere il nostro collimatore lo fa in modo 

“automatico”, vedi esperienza di Davisson e Germer), possiamo considerare un unico 

addendo, diciamo il primo, ottenendo un’onda “complessa” (di cui la parte reale o la parte 

immaginaria corrispondono al tipo di onde che conosciamo) che si propaga nel verso 

positivo dell’asse x: 

                                               Ψ(𝑥, 𝑡) = 𝐴 ∙ 𝑒𝑖𝑘𝑥−𝜔𝑡                                                 (3.7bis)    

Dato che per un’onda armonica 𝜆 =
2𝜋

𝑘
   dalla (3.5) scopriamo che  

                                                            𝜆 =
ℎ

𝑝
                                                               (3.8)  

L’onda ipotizzata da De Broglie per l’elettrone è semplicemente (per modo di dire…) la 

funzione d’onda per la particella libera. 

Osserviamo un fatto interessante, uno dei tanti decisamente sconvolgenti generati dalla 

teoria: la probabilità di individuare la posizione dell’elettrone è la stessa in tutti i punti, infatti 

|Ψ(𝑥, 𝑡)|2  della (3.7bis)  è indipendente da 𝑥 oltre che dal tempo. Ciò è in realtà del tutto 

coerente con la teoria: dipende dal fatto che la (3.7bis) è un’autofunzione dell’impulso, cioè 

l’impulso ha un valore  𝑝=ℏ𝑘  determinato; uno dei più noti risultati della Meccanica 

Quantistica (la cosiddetta relazione, o principio, di indeterminazione) afferma che allora la 

posizione deve essere completamente indeterminata. Non posso parlare di questo ora, ci 

vogliono troppi elementi da chiarire e ritengo che non sia il caso. 

 

 

3 b : L’atomo di idrogeno   

Per l’atomo di idrogeno l’equazione di SchrÖdinger (2.2)  si scrive: 
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                            −
ℏ2

2𝑚
(

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
) − 𝑘 ∙

𝑒2

𝑟
= 𝐸 ∙ 𝜓(𝑟)                                     (3.9)  

 Questa equazione è molto più complicata da risolvere di  quella della particella libera; come 

si può intuire, la simmetria della funzione  𝑈(𝑟) = −
𝑘∙𝑒2

𝑟
      suggerisce di risolverla usando 

il corrispondente tridimensionale delle coordinate polari nel piano, con la variabile 𝑟  e i due 

angoli corrispondenti alla latitudine e longitudine come sulla superficie terrestre. Utilizzando 

un formalismo molto raffinato, che non è assolutamente alla nostra portata, sono stati 

calcolati (SchrÖdinger propose questa equazione nel 1925) autofunzioni e autovalori della 

(3.9) ottenendo come risultato per i possibili autovalori dell’energia proprio quelli di Bohr(!): 

                                                         𝐸𝑛 = −
𝑅𝑦

𝑛2                                                         (3.10) 

con   𝑅𝑦 = 13,6 𝑒𝑉 costante di Rydberg. Gli autovalori dell’energia sono qui descritti da un 

solo numero intero, detto numero quantico principale, che è il solito numero naturale 𝑛 ≥

1; le autofunzioni sono qui la grossa novità, dato che nella teoria di Bohr gli stati dell’elettrone 

erano le traiettorie del suo moto circolare uniforme. 

Le soluzioni della (3.9) sono descritte da tre numeri quantici: 

1 ) il numero quantico principale 𝑛 appena (re)introdotto; 

2 ) per ogni fissato 𝑛 , ci sono 𝑛 possibili numeri quantici detti 𝑙 di valori  

𝑙 = 0, 1, … , 𝑛 − 1 

3 ) per ogni fissato 𝑙 , ci sono 2𝑙 + 1 numeri quantici detti 𝑚𝑙 di valori  

                                                𝑚𝑙 = −𝑙 , −(𝑙 − 1), . . ,0,1, … (𝑙 − 1), 𝑙  

Ogni soluzione della (3.9) si può descrivere dunque in termini della terna (𝑛 , 𝑙 , 𝑚𝑙). 

Nell’atomo di idrogeno per ogni fissato 𝑛 , e quindi per ogni fissata energia 𝐸𝑛 = −
𝑅𝑦

𝑛2 , 

abbiamo, come si può facilmente verificare, 𝑛2 autofunzioni distinte; solo il livello 

fondamentale, con 𝑛 = 1 , è non degenere, tutti gli altri lo sono (ad. es. per 𝑛 = 10 ci sono 

100 autofunzioni con quell’energia!).  

Come il numero quantico  𝑛 è associato all’osservabile energia e alla sua conservazione nel 

sistema atomo di idrogeno, la struttura della meccanica quantistica associa i numeri quantici 

𝑙 e  𝑚𝑙 rispettivamente alle osservabili seguenti, associate al momento angolare 𝐿⃗⃗  

dell’elettrone e alla loro conservazione: quadrato del momento angolare 𝐿⃗⃗2 e componente 

𝐿𝑧  di 𝐿⃗⃗ . Queste due osservabili sono entrambe misurabili simultaneamente tra loro e 

all’energia (osservabili compatibili) e le nostre autofunzioni hanno contemporaneamente le 

tre grandezze con valore determinato; la cosa non è scontata ed è una peculiarità della 

teoria, c’è un esempio famoso di coppia di osservabili non compatibili che sono la posizione 

e l’impulso di una particella quantistica. Per l’esattezza, gli autovalori dell’osservabile 𝐿⃗⃗2  e  

𝐿𝑧  sono rispettivamente: 
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                                                      𝐿2 = ℏ2 ∙ 𝑙(𝑙 + 1)                                     (3.11) 

                                                        𝐿𝑧 = ℏ ∙ 𝑚                                             (3.12) 

In conclusione non posso fare a meno di scrivere la soluzione della (3.9) corrispondente al 

livello fondamentale, che come già detto è l’unico non degenere, cioè 𝑛 = 1 , 𝑙 = 𝑚𝑙 = 0: 

                                                     𝜓100 =  
1

√𝜋∙𝑎0

3
2

 𝑒
−

𝑟

𝑎0                                      (3.13) 

con  𝑎0  raggio di Bohr; la funzione   ha simmetria sferica e questo è compatibile con il valore 

nullo del momento angolare di quello stato. 

Giorgio Cellai, docente di matematica e fisica all’I.I.S. “G. Carducci” Volterra.  

 


