POMARANCE: UNA BREVE PASSEGGIATA ‘FLORISTICA’ (flora povera) A SCANSIONE MENSILE ALLA PERIFERIA DEL PAESE, PARTE PRIMA a cura di Angelo Bianchi, Cristina Moratti, dott. Piero Pistoia

Questo progetto è piaciuto al blog Agenda19892010 come comunicato il 2-6-2015 da WordPress all’Amministratore con una e-mail.  E’ piaciuto anche al blog Briciolanellatte come comunicato il 9-6-2015 da WordPress all’Amministratore con una mail.

_________________________________________________________

piero-pistoia-curriculumok (#)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

PREMESSA

ATTENZIONE: QUALORA, IN QUESTO ARTICOLO PUBBLICATO SU INTERNET, ALCUNE FOTO (non sappiamo il perché!) NON APPAIANO, LASCIANDO SPAZI BIANCHI, O APPAIONO, MA A BASSA RISOLUZIONE, BASTA CLICCARE SU ESSI PER FAR APPARIRE LE FOTO INGRANDITE E CHIARE! PER TORNARE INDIETRO ANNULLARE IL CARICAMENTO DELLA FOTO.

N.B. – SE NON PRECISATO ALTRIMENTI, TUTTE LE FOTO, PROGETTI, SCRITTI, ARGOMENTAZIONI E COMMENTI SONO DEL COORDINATORE PIERO PISTOIA

CURRICULUM DI PIERO PISTOIA:

piero-pistoia-curriculumok (#)

CHI E’ L’AUTORE (traccia): Curriculum di Piero Pistoia

Piero Pistoia, diplomato negli anni ’50 presso il Liceo Classico Galileo Galilei di Pisa, è dottore in Scienze Geologiche con  110/110 e lode, discutendo una tesi di geofisica e, da borsista, ha lavorato e pubblicato presso l’Istituto di Geologia Nucleare di Pisa, misurando le età degli “strani” graniti associati alle ofioliti (1) e studiando i serbatoi di gas e vapori della zona di Larderello. Successivamente ha scritto una cinquantina di articoli pubblicati a stampa, a taglio didattico-epistemologico, di cui circa la metà retribuiti secondo legge,  dagli editori Loescher, Torino, (rivista “La Ricerca”), La Scuola di Brescia (“Didattica delle Scienze”), a controllo accademico ed altri, affrontando svariati problemi su temi scientifici: dall’astrofisica all’informatica, dall’antropologia culturale all’evoluzione dell’uomo, dalla fisica alla matematica applicata e alla statistica con il supporto di migliaia di linee di svariati programmi in linguaggi come Mathematica di Wolfram, R, SPSS, dalla geologia applicata al Neoautoctono toscano, dall’origine dell’Appennino alla storia delle ofioliti, alle mineralizzazioni delle antiche cave in Val di Cecina (in particolare su calcedonio, opale e magnesite) ecc..  En passant, ha scritto qualcosa anche sul rapporto Scienza e Poesia, sul perché la Poesia ‘vera’ ha vita infinita (per mere ragioni logiche o perché coglie l’archetipo evolutivo profondo dell’umanità?); ha scritto alcuni commenti a poesie riprese da antologie scolastiche e,  infine decine di ‘tentativi’ poetici senza pretese. Molti di tali lavori sono stati riportati su questo blog. (2)

NOTE

(1) L’età dei graniti delle Argille Scagliose, associati alle ofioliti, al tempo alla base della falda in movimento, corroborò sia l’ipotesi che esse fossero ‘strappate’ dal basamento ercinico durante i complessi  eventi che costruirono la catena appenninica, sia, indirettamente, rafforzò la teoria a falde si ricoprimento nell’orogenesi appenninica. Fu escluso così che il granito associato alle ofioliti derivasse, almeno non in tutti i casi, da una cristallizzazione frazionata (serie di Bowen) da un magma basico od ultrabasico.

(2) Piero Pistoia ha superato concorsi abilitativi nazionali, al tempo fortemente selettivi (cioè non frequentò mai i famigerati Corsi Abilitanti, fortemente voluti dai sindacati dei docenti!), per l’insegnamento, in particolare, nella Scuola Superiore per le seguenti discipline: Scienze Naturali, Chimica, Geografia, Merceologia, Agraria, FISICA e MATEMATICA. Le due ultime materie sono maiuscole per indicare che Piero Pistoia in esse, in tempi diversi, fu nominato in ruolo, scegliendo poi la FISICA, che insegnò praticamente per tutta la sua vita operativa.

Pochi anni prima che l’ITIS di Pomarance fosse aggregato al Commerciale di Volterra, il dott. prof. Piero Pistoia fu nominato Preside Incaricato dal Provveditorato agli studi di Pisa, ottenendo il massimo dei voti sulla attività svolta.

Così la parte scritta di questo Post, nel bene e nel male, è a cura di Piero Pistoia che auspica critiche, suggerimenti, correzioni, integrazioni.

NEL MALE CI SI CORREGGE! SE E DOVE SI CORREGGE, SPECIALMENTE LI’, SI IMPARA!

COL TEMPO FORSE FAREMO DEGLI INDICI E DEI RIMANDI INIZIALI PER MUOVERCI NON IN MANIERA SERIALE ALL’INTERNO DEL POST

Procederemo al solito discutendo e argomentando non tanto per ‘comunicare’ quanto per ‘costruire’ insieme questo tipo di conoscenza come suggerisce Foerster. L’obbiettivo è esclusivamente didattico-culturale, per cui questo materiale può essere utilizzato da tutti gratuitamente nel modo che scegliamo (eccetto i disegnetti  schematici trasferiti dai testi di riferimento); in particolare, auspichiamo venga scoperto e utilizzato in qualche modo dalla Scuola.  

I TRE CURATORI ‘COSTRUISCONO’ IN TEMPO REALE PER  CUI NON GARANTISCONO CHE I CONCETTI, SEMPRE IN VIA DI APPROFONDIMENTO E MODIFICA, POSSANO ESSERE DEFINITIVI E CORRETTI

I TESTI QUALIFICATI DI RIFERIMENTO PER QUESTO LAVORO SONO PRINCIPALMENTE I SEGUENTI (consigliamo i lettori di  procurarseli per i riferimenti, l’approfondimento di questo post e la qualificazione delle biblioteche personali!) :

EUGENIO BARONI “GUIDA BOTANICA D’ITALIA” Ed. CAPPELLI

PIETRO ZANGHERI “FLORA ITALICA Vol. I-II-III” Ed. CEDAM        

SANDRO PIGNATTI “FLORA D’ITALIA Vol. I-II-III” Ed. EDAGRICOLE

EDUARD THOMMEN “ATLAS DE POCHE DE LA FLORE SUISSE” EDITIONS BIRKHAUSER BALE.

Si allegano anche foto di qualche pagina ripresa da un interessante libro, con schizzi originali affiancanti lo scritto sintetico e rilevante, a firma di due ricercatrici dell’Istituto Botanico dell’ Università di Pisa,  A.M. Pagni e G. Corsi, stampato da Arti Grafiche Pacini Mariotti, Pisa che ringraziamo.

VENGONO ANCHE CONSULTATE DUE GROSSE ENCICLOPEDIE SUL REGNO VEGETALE, L’UNA EDITA DA VALLARDI E L’ALTRA DA RIZZOLI; E SVARIATI ALTRI TESTI SECONDARI DI DIVERSE CASE EDITRICI CHE NOMINEREMO QUANDO NECESSARIO.

A questi testi si farà continuamente riferimento esplicito e si spera che Autori ed Editori permetteranno di trasferire qualche disegno schematico di chiarimento dai loro testi a questo post, il cui unico obiettivo è e rimarrà solo quello di ‘costruire’ e comunicare didatticamente cultura, per quanto ci riesce, sempre del tutto gratis. Questo blog non ha alcun fine di lucro ed è auto-finanziato. Comunque siamo disponibili nell’immediato a qualsiasi intervento su questo post su avvertimento (al limite, se necessario, anche a sopprimerlo!)

_______________________________________________________

UNA DEDICA NECESSARIA (NDC: Piero Pistoia)

La mia idea di scegliere un percorso botanico accessibile alle Scuole fu discussa in una serie di incontri  sul rapporto Scuola/Natura con un genuino naturalista empatico e poeta locale, il maestro Giuseppe Zanella, che dedicò tutta la vita a studiare i comportamenti di animali e vegetali con grande intuito, sensibilità e rispetto per la Natura e l’Universo. Fece numerose pubblicazioni per importanti case editrici e articoli per note enciclopedie. Stavamo per iniziare in concreto il lavoro, quando sfortunatamente si ammalò irreversibilmente. Di questo personaggio, secondo me, di rilevante spessore, mi rimane un grande e affettuoso ricordo di amicizia e di stima e mi sento di dedicare questo nostro lavoro floristico alla Sua memoria.

Dott. PIERO PISTOIA, coordinatore.

_________________________________________

POST SPERIMENTALE IN VIA DI COSTRUZIONE – Intanto  iniziamo con un primo tentativo di percorso. Sul percorso mensilmente si osserveranno, si fotograferanno e descriveranno per la classificazione le nuove piantine ‘che vediamo’ e ad ‘ogni giro’ cercheremo anche di descrivere alcune di ‘quelle di base’. Possibilmente su ogni piantina verrà attivata una discussione anche tornando indietro. Chiaramente il ciclo mensile copre 12 mesi, ma… ogni anno si rinnova, per cui questo post rimarrà aperto all’infinito, naturalmente finché  gli autori non si stancheranno!

LA CARTINA DEL PERCORSO

fiori0001fiori0002Il podere da cui inizia (o finisce) la vicinale Sant’Anna (nel senso che è riportata l’indicazione ufficiale) si chiama P. Poggio Bartolino, subito prima della deviazione Podernuovo-Poggio Bianco.

Un’erbaccia spontanea abbondante in settembre-ottobre 2015 è stata oggetto di discussione sulla sua classificazione: Erigeron bonariensis o Conyza bonariensis (=Erigeron linifolium)? Per anticipare o rivedere le argomentazioni del coordinatore P. Pistoia, cliccare sulla parola ‘calda’ di seguito (in effetti sembra che Erigeron bonariensis non appaia nei testi consultati).

ERIGERON o CONYZA?
_______________________________________

ALTHEA cannabina

Per vedere altri schemi per la sua classificazione, controllare il anche link ‘Althea cannabina’ nella PARTE QUARTA, per un confronto con Malva alcea.

ALCUNE FOTO IN ANTEPRIMA

   (Le foto di Cristina Moratti sono riportate anche sul blog “La carrozza del Gambini”)

 Quattro Foto di due piantine (Orchidea apifera, Erba vajola) del percorso sperimentale eseguite da Cristina Moratti

ophrys apifera (1)

ophrys apifera (2)Ophrys apifera (fioritura maggio)

 Cristina ha fotografato l’orchidea vicino al P. San Domenico


erba-vajola-1

erba-vajola-2

La Borraginacea Cerinthe maior, è stata classificata da Angelo Bianchi, Erborista. Si notano sulle foglie tracce di strutture ghiandolari.

La Cerinthe si poteva vedere, poco tempo fa, nel tratto, a sinistra del percorso,  in cui la strada vicinale di Sant’Anna, dopo breve salita oltre il P. Il Ponso, piega scendendo verso Poggio Bartolino; sarebbe stata presente dalla primavera all’autunno, come accadde lo scorso anno.

Cerinthe major L. Boraginaceae - Erba vaiola - (ok)

In effetti a fine Maggio 2015 la stazione a Cerinthe è stata soppressa; era nata sul percorso del trattore. La rivedremo il prossimo anno? O forse prima?

————————————————-

LA ROSASEA FILIPENDULA (SPIRAEA) exapetala

Due Foto di una piantina (Filipendula) del percorso sperimentale, di Cristina Moratti e Piero Pistoia rispettivamente

filipendula spirea

OLYMPUS DIGITAL CAMERA

Si tratta della  Rosacea Filipendula (Spiraea) exapetala, classificata da Piero Pistoia; la piantina era diffusa praticamente lungo tutto il percorso, in particolare davanti a Poggio Bartolino (prima del taglio dei margini); fioritura nella seconda metà di Maggio; da giugno sembra scomparsa sono rimaste solo le tracce delle foglie basali.

Quella che segue è la foto di Cristina Moratti di una Crucifera (Brassicacaea) del genere Alyssum caratteristica delle ofioliti (A. bertolonii), che fa parte di una interessante stazione floristica fotografata (una ventina di pianticelle che vivono o vivono anche sulle ofioliti) e classificata e commentata dalla stessa Cristina sul blog “La carrozza del Gambini”. Questa pianticella viene riportata in questo percorso sperimentale perché mi sembra che fosse quella che  in autunno del 2014 stranamente faceva, se ben mi ricordo, bella vista sul lato destro della strada Sant’Anna una decina di metri prima che deviasse scendendo verso Poggio Bartolino ed alcune anche davanti allo stesso podere Sant’Anna. L’ipotesi, se fosse stato un Alisso, fu che qualche cercatore di funghi del posto calpestando gli ofioliti (leggere su questo blog il post a più voci sulla ‘strana storia’ di queste rocce) della macchia di Monterufoli abbia riportato semi su questa bancata argillosa a ciottoli silicei del Neoautoctono (se vuoi approfondire cerca ‘Neoutoctono’ su questo blog)! Attualmente nel percorso non ho notato pianticelle simili a quella che nel ricordo mi sembrava un Alyssum; vedremo in autunno se ricrescerà, in modo da poter controllare! Sarebbe interessante comunque che Cristina, agganciando una mappa topografica, da fornire nel suo blog, ad una strada percorribile con la macchina,  descrivesse il posto di questa stazione con una tolleranza di qualche metro, in maniera che possa essere resa visitabile ad hoc. Per es., una scolaresca nelle ore di lezione della mattinata potrebbe, come obbiettivo didattico specifico, visitarla in qualche ora e tornare a lezione.

DIGRESSIONE PER ASSIMILARE LE IDEE E CORREGGERE QUELLE CHE CREANO FAILLANCE

Digressione sulle piante delle ofioliti e in particolare sull’Alissum. La proposta sarebbe di costruire un articolo scritto in Word o con Open Office dal titolo per es. “Osservazione, descrizione e classificazione delle piantine endemiche delle Ofioliti”. Dopo il titolo si potrebbe inserire dal menù del word processor scelto una o più foto di insieme. …..Successivamente si inserisce nel testo, per es., la foto dell’Alissum, e si scrivono nel testo sotto quali sono le caratteristiche importanti per la classificazione inserendo ogni volta le loro foto (forma delle foglie, distribuzione sul caule, foto del fiore singolo ecc.) e questo in successione per ogni piantina. E’ un lavoro lungo da fare a ‘pezzi’ aggiornando con calma!

Alyssum bertolonii

 PREMESSA a cura del dott. Piero Pistoia

L’idea è di scegliere un percorso di circa un’ora andata e ritorno (consistente con l’utilizzo anche da parte delle scolaresche) che “apra” alla campagna, meglio se già utilizzato dai cittadini per passeggiate, footing, ecc..  Immaginiamo di dividerlo  in tratti con riferimenti topologici riconoscibili e che abbiano significato per le pianticelle della flora spontanea che qui vivono (almeno finchè il Comune non deciderà di tagliare l’erba ai margini della strada). L’idea si basa anche sull’ipotesi che le piantine, anche se tagliate, abbiano una probabilità superiore a quella fornita dal caso di ricrescere circa nella stessa zona. Come primo tentativo, abbiamo scelto una successione di tratti che  partendo dall’inizio di via Mazzolari, zona verde davanti alla proprietà Scarciglia (stazione floristica a Salvia sclarea ed altro; si vedano, per es. al recinto, i cartelli alle varie piante della macchia mediterranea), attraverso via del Poderino, scende a via dei Filosofi e, verso sud-est, incrocia la strada chiusa che porta a sud verso il Podere Sant’Anna, il P. San Vittore e il P. Il Ponso e, oltre il poggetto, scende verso sud-est fino a Poggio Bartolino dove ha termine la vicinale  Sant’Anna e poi ancora verso sud nella strada sterrata che porta al bivio per il Podere Il Mirto e a Poggio Bianco (vedere la carta topografica riportata di questi posti).

Durante la costruzione, introdurremo, quando si rendono disponibili, le foto delle diverse pianticelle mese per mese da riordinare di volta in volta, attribuendole ai diversi tratti di strada.

Le seguenti due sezioni della carta topografica del paese di Pomarance (scala originale 1=5000) che contengono il percorso descritto evidenziato in giallo, sono state  integrate con i nomi dei tratti di strada, che compongono il percorso stesso ed altro (individuazione scuole, edifici rilevanti, riferimenti alla posizione floristica ecc.). Per la carta topografica e per la gentilezza e disponibilità dimostrate dobbiamo ringraziare il tecnico dell’Ufficio del Comune, la geometra Signora Cabiria Pineschi Gazzarri. Da notare come la carta non sia aggiornata; è poco evidenziato, per es., scendendo per la vicinale Sant’Anna, a circa un centinaio di metri dall’incrocio con Via dei Filosofi, sulla destra lo stradello per il P. San Pietro (da aggiungere).

LA CARTINA DEL PERCORSO

fiori0001

fiori0002

Il podere da cui inizia la vicinale Sant’Anna (nel senso che è riportata l’indicazione ufficiale) si chiama P. Poggio Bartolino, subito prima della deviazione Podernuovo-Poggio Bianco.

Le foto immesse non sono ottimali, ma non sono definitive; ne cercheremo di migliori.

DIARIO FLORISTICO DA AGGIORNARE NEL CORSO DEL MESE DI MAGGIO 2015

DIARIO FLORISTICO AGGIORNATO GIORNO PER GIORNO NEL CORSO DEL MESE DI GIUGNO 2015

ALLA FOTO DI UN ELEMENTO EMBLEMATICO DI OGNI SPECIE (O GENERE) VERRA’ AGGIUNTA UNA BREVE SCHEDA TRASFERIBILE,  UTILE PER LA SUA IDENTIFICAZIONE

TUTTE LE FOTO, CHE NON RIPORTANO IL NOME  DI UN AUTORE, SONO STATE SCATTATE DA PIERO PISTOIA

– rara la salvia selvatica

– A partire da giugno della Filipendula rimangono praticamente solo le foglie

OLYMPUS DIGITAL CAMERA

La Filipendula a giugno

LA GENTIANACAEA CHLORA perfoliata

– Primi di giugno fioritura della Chlora perfoliata oltre il cartello per podere Il Mirto, scendendo verso Poggio Bianco a metà del tratto; da fare foto. Sull’argine destro, a scendere, dinanzi al P. Sant’Anna.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Chlora con foglie di Filipendula

OLYMPUS DIGITAL CAMERA

La Gentianacaea Chlora perfoliata

Non individuata ancora la Gentianacea Erytraea centaurium, vista in estate un anno fa.

L’HIPERICUM perforatum

– si mantiene fiorito ancora Hipericum perforatum

OLYMPUS DIGITAL CAMERA

Hypericum perforatum

OLYMPUS DIGITAL CAMERA

IL PROBLEMA DELLA SCROPHULARIACAEA VERBASCUM blattaria

– fiorito da poco un verbasco (?), unico stelo glabro con foglie a triangolo isoscele a lati leggermente curvi e seghettati (?); più grandi ed ovali-ellittiche debolmente picciolate (non inserite direttamente sul ramo, ma tramite un corto peduncolo) quelle basali, sempre più piccole e sessili (inserite direttamente sul ramo) quelle superiori (foglie cauline) tendenti ad abbracciare  il caule con la parte inferiore; Verbascum blattaria? Il famoso Verbasco delle falene? Fare foto e classificare; questi individui sono visibili nel tratto verso Poggio Bianco dopo il cartello per il P. Mirto, a sinistra prima dello  stradello che scende a destra  nel campo. Sembra esista un solo esemplare, la settimana scorsa (10-6), in questo tratto, ne vidi 4 o 5. Oggi 18 giugno, questo esemplare è stato tagliato, mentre è visibile un’altra piantina col fiore  qualche metro sotto il tasso barbasso (vedere sotto) scendendo, a sinistra, sulla stessa sterrata (vedere foto).  Sembra siano appena nati altri esemplari in questi giorni in cima al poggetto sopra il P. Il Ponso, sulla sinistra salendo. Oggi (18) uno di essi ha messo il fiore.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERASi notano in basso foglioline pentafille forse di Potentilla

OLYMPUS DIGITAL CAMERA

Sulla deviazione per il P.Mirto: Verbascum blattaria? vicino una Verbena non ancora in fiore

La foto che segue riporta un individuo di V. blattaria (?) del poggetto; si notano alcuni esemplari di Papaver rheas

La foto che segue è stata scattata l’anno scorso sullo stesso percorso e circa lo stesso periodo; assomiglia alla precedente?

OLYMPUS DIGITAL CAMERA

Verbascum blattaria (?) dell’anno scorso

OLYMPUS DIGITAL CAMERA

Verbasco (?) del 18-giugno dopo il tasso barbasso; ancora visibile l’Iperico perforatum

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Alcuni aspetti della pianticella Verbascum blattaria

Uno sguardo al futuro…….

Abbiamo fotografato, dopo anni (2 giugno 2019) ancora piantine di Verbascum blattaria nel nostro percorso, scendendo, davanti alla proprietà Sant’Anna….

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

LA SCROPHULARIACAEA VERBASCUM thapsus

Di seguito in vegetazione un ‘individuo’ di Verbascum thapsus (con cartello in perallum) appare sempre sulla deviazione per Poggio Bianco a sinistra scendendo, a metà tratto.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Verbascum tapsus scendendo nella sterrata qualche metro dopo l’entrata nel campo sul poggio a sinistra.

OLYMPUS DIGITAL CAMERA

Si nota la Chlora in fondo a destra della foto vicino ad un iperico; guardando lungo la strada si intravedono appena la cima e le foglie inferiori del tasso barbasso (ingrandire) e il ‘passello’ che devia sopra poggio.

Un altro esemplare fu presente per un paio d’anni passati sull’argine destro scendendo lungo la strada Sant’Anna, qualche decina di metri dopo la recinzione dell’uliveta sulla sinistra e qualche decina di metri prima del bivio per il P. Ponsino.

OLYMPUS DIGITAL CAMERA

SU E GIU’ NEL TEMPO: uno sguardo nel futuro…

SI AGGIUNGONO FOTO  DEL BARBASSO APPARSO DUE O TRE ANNI DOPO LA SUA TOTALE SCOMPARSA DALLA PASSEGGIATA (avvenuta circa nel 2017), PRATICAMENTE NELLO STESSO POSTO, scattate da Piero Pistoia.

SIAMO AL 3 FEBBRAIO 2019 e abbiamo scattato la seguente foto, scendendo verso il Ponsino a destra a metà argine:

CHI SA SE A PRIMAVERA-ESTATE DEL 2019 lo vedremo fiorito!

RIPORTIAMO ALTRE FOTO DI V. thapsus scattate intorno al 20 Aprile 2019 a seguire, scendendo verso il Ponsino sempre a destra sull’argine.

LE DUE SUCCESSIVE FOTO SONO STATE SCATTATE IL 13-05-2019 sullo stessa stessa pianta

La stessa pianta il 20 maggio 2019

Il 20-Giugno-2019, un mese dopo, il tasso precedente è ormai fiorito ed ha raggiunto almeno due metri di altezza come dalla foto successiva:

Mentre, tornati qualche giorno dopo il 20 maggio 2019, poco oltre il bivio per Il Ponsino sempre sulla sinistra della strada scendendo, l’erba qui è stata tagliata…. e la piantina che segue nata al bordo della strada è stata soppressa.

Vicino alla precedente rimangono, sotto strada, altre tre piantine che in estate speriamo di vederle invece fiorite, ma, prevedo, sarà improbabile; vedremo….

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Oggi, 24, giugno, 2019, subito dopo il Solstizio estivo, ho fotografato di nuovo le piantine del thapsus, davanti al P. Ponsino, sotto strada, due lontane si intravedono presso la quercia:

Le stesse due piantine che si intravedono vicine alla quercia precedenti, sono individuate nella foto scattata da Pier Francesco Bianchi il 27-06-2019

Seguono le foto che ho scattato sull’argine destro scendendo subito prima del Ponsino il 24- giugno-2019:

Nella precedente si intravede a destra il podere e lontano l’ingresso al podere.

Seguono ancora foto di Pier Francesco Bianchi del thapsus sull’argine e foto scattata dall’ingresso al podere, verso l’argine.

Si intravede il thapsus lontano sull’argine, e la casa e l’ingresso subito a sinistra.

Ancora una memoria dal futuro: siamo a giugno 2019

Chi volesse leggere questa breve memoria in pdf, cliccare sotto:

VERBASCUM thapsus,INTERVENTI MINIMALI E PROBLEMI PLANETARI – breve memoria

Altrimenti continuare a leggere:

VERBASCUM thapsus e la BIODIVERSITA’: breve memoria

PROPONGO UN PROCESSO MINIMALE PER LO PIU’ CULTURALE  PER ARGINARE LA SCOMPARSA DI SPECIE SULLA SUPERFICIE DELLA TERRA

Intervento a mosaico in ogni zona, che favorirebbe anche la consapevolezza culturale del problema della estinzione delle specie e  della Biodiversità (l’ONU attualmente ha valutato che otto milioni di specie sono a rischio)

Noi abbiamo seguito per più di due anni un percorso floristico in una zona più periferica del paese (lungo la vicinale Sant’Anna di Pomarance), scansionando i suoi margini mensilmente. I processi ed i risultati di questo ‘diario’ sono riportati in sette posts nel Blog ‘ilsillabario2013’.

Due o tre anni fa apparve una piantina, unica in tutto il percorso, di Verbascum thapsus, a cui avevano tagliato l’alto butto fiorifero (si trovava sull’argine destro, scendendo lungo la vicinale Sant’Anna, vicino al viottolo del Podere ‘Il Ponsino’). Esistevano, invece, allora come oggi, altre specie del genere Verbascum (il sinuatum, il blattaria…)

Andammo ad avvertire le guardie comunali per salvarla dai periodici tagli dell’erba. Questo intervento permise alla piantina lo sviluppo di due altri butti fioriferi, che raggiunsero la maturazione dei loro semi.

Dopo anni è riapparsa oggi (grosso modo nello stesso posto), una fiorente piantina di thapsus, e, giorni dopo, sono apparse altre piantine nei dintorni.

Siamo allora tornati presso l’ufficio delle guardie comunali ad avvertire della loro presenza. Se l’avvertimento verrà accolto, si moltiplicherà esponenzialmente il numero di piantine di questa specie, insieme alle molteplicità di microrganismi ed organismi al contorno, utili per la reciproca sopravvivenza, in una zona dove il thapsus era completamente assente.

Dal Comune ci hanno informato che ultimamente il responsabile del taglio dell’erba in questa sezione di strada è l’abitante del podere Il Ponsino; interpellato il 25-05-2019, ci ha assicurato che la piantina tabellata verrà risparmiata.

Un piccolissimo gesto moltiplicato all’infinito prima o poi fa la differenza, come insegna  l’analisi matematica (come la raccolta di una bottiglia di plastica abbandonata sul corso di un fiume, in un bosco …, o donare un tozzo di pane e formaggio, di vangelica memoria, ad uno che bussa alla tua porta…, o regalare una scatola di antibiotici ad una madre per il suo piccolo ammalato …, o sforzarsi di non utilizzare oggetti che scaricano in atmosfera concentrati di  elementi che distruggono la protezione del pianeta, ed altri gesti minimali che al limite potrebbero davvero risolvere gli immensi problemi planetari, oltre naturalmente a maturare, in termini educativi, la consapevolezza morale verso i bisogni degli altri umani ed del pianeta).

pieropistoia

Le seguenti foto sono state scattate il primo settembre 2019 da Pier Francesco Bianchi dove si vede la precedenta piantina di V. tapsus  in piena maturazione, in particolare quella grande sull’argine destro scendendo, subito prima dell’accesso al podere Ponsino;  ma anche le altre tre salvate davanti all’accesso stesso e subito dopo sulla sinistra sono maturate.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

OLYMPUS DIGITAL CAMERA

Murex

LA COMPOSITA ACHILLEA millefolium

– continua la piena fioritura dell’Achillea millefolium, via del Poderino, davanti al cancello chiuso dello stadio con cartello in perallum (vedere foto) e davanti al P. San Vittore, prima della salita sulla vicinale Sant’Anna verso il Ponso insieme alle piante da giardino; ora ‘domina’ in altezza (vedere foto). Qualche piantina a sinistra sulla salita.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

… ora ‘domina’ in altezza…

OLYMPUS DIGITAL CAMERA

Confronto foglie achillea in alto e filipendula

CONFRONTO DELLE FOGLIE DI ACHILLEA E FILIPENDULA

Dal 20-04-2019, al 25-05, vari anni dopo la fioritura dell’Achillea delle foto precedenti, sono state riprese altre foto ‘in crescita’ nel fossetto davanti allo stesso podere San Vittore:

LA BORRAGINACAEA BORRAGO officinalis

-Sta sparendo la Borrago officinalis (vedere foto); presente da Maggio nel prato subito sotto strada di via del Poderino, ora tagliato e lungo la vicinale Sant’Anna scendendo, a destra lungo l’argine dove esisteva prima il Tasso Barbasso; l’argine è stato da poco ripulito. Appare un residuo (presenza di un indicatore in peralluman) una decina di metri dopo il bivio per il P. Il Ponsino.

OLYMPUS DIGITAL CAMERA

19-06: i resti della B. officinalis

Della Filipendula praticamente è cessata la fioritura e si vedono molte foglie basali e qualche raro fiore (diffusa nel percorso), si notano ceppi di Antemis cotha, la Nigella damascena sta fruttificando (grosse capsule con ancora qualche fiore), ridotte le pervinche (davanti cartello per P. Mirto), la Verbena che appena è iniziata a fiorire (prima settimana),  Ombrellifere, in particolare una specie, appena fiorite (10-6) diffuse nel percorso, in particolare all’inizio strada sterrata davanti al cartello per P. Mirto), e, ancora, Echium vulgare, le Campanule (diffuse), i finocchi selvatici (diffusi), i cardi (in particolare il Cardo dei lanaioli, Dipsacus fullonum, lungo la strada sterrata), la Cichoria entibo (diffusa velocemente), le Malve (diffuse), Composite che iniziano con un unico stelo breve rigido con grosso capolino e foglie lanceolate spesse e un po’ pelose e seghettate stanno crescendo (da classificare: vedere la classificazione  di C. Moratti nel mese di settembre), le Potentille gialle (in cima al poggetto), le Plantago con le specie maior e minor (diffuse), l’infestante Inula viscosa, l’Artemisia con le specie absinthium officinalis. Il giorno 18-6 davanti al P. Sant’Anna lungo la vicinale a ridosso dell’argine si notano varie e fresche piantine anche fiorite della labiata Camedrio (Teucrium camedris), la scarpata non è stata ancora tagliata, lo sarà fra breve! Il 19-6, lungo il tratto Via dei Filosofi, inizia la crescita di un  terzo Verbasco, con rosetta a foglie larghe e pelose che tendono ad ondulare al bordo (vedere dopo la classificazione). DA CONTINUARE.

OLYMPUS DIGITAL CAMERA

Resti della Filipendula

LA COMPOSITA ANTEMIS chota

OLYMPUS DIGITAL CAMERA

…si notano ceppi di Antemis chota (o chota pictoris?)

OLYMPUS DIGITAL CAMERA

Antemis cotha

OLYMPUS DIGITAL CAMERA

…, la Nigella damascena sta fruttificando…(foto da rifare)

OLYMPUS DIGITAL CAMERA

Fiore di Nigella damascena con fiori della Potentilla gialla (in uno dei quali si notano anche i sepali del calice)

IL PROBLEMA DELL’OMBRELLIFERA DI LUGLIO

…Ombrellifere (Umbelliferae, o Apiaceae) da poco fiorite…

Fusti eretti con steli non cavi (da controllare meglio), striati longitudinamente, leggermente spinati al tatto, sezione forse pentagonale (o triangolare?), 5 pedicelli fioriferi esterni più lunghi e 4 interni più brevi, forse uguali a due a due. Pianta ramificata di aspetto ‘delicato’ ed aperto. L’infiorescenza è composta da ombrelle di 9 peduncoli e da brevi ombrellette di una decina di fiori bianchi con alcuni piccoli petali (da precisarne numero e forma). La forma delle foglie è desumible dalle foto riportate. Per i frutti aspetteremo la maturazione. Oggi ( 18-6) sono maturati alcuni frutti, una decina o meno per ognuno dei peduncoli.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

L’OMBRELLIFERA TORILIS arvensis

OLYMPUS DIGITAL CAMERA

Da classificare! Piero Pistoia ipotizza che l’Ombrellifera del genere Tòrilis sembrerebbe  probabile rispetto alle griglie disponibili: foglie pennato_divise; ombrelle convesse senza involucro a 4-12 raggi con peduncoli oltre 5 mm; fiori terminali a fusti e rami; frutta (acheni) ad aculei uncinati diffusi sui due semifrutti; forse la specie è Tòrilis arvensis.

OLYMPUS DIGITAL CAMERA

Cinque peduncoli fioriferi dell’ombrella esterni più lunghi e quattro interni più brevi, forma di una foglia intermedia.

     

Torilis arvensis

OLYMPUS DIGITAL CAMERA

Semi di T. arvensis (?)

LA VERBENA officinalis

OLYMPUS DIGITAL CAMERA

La foto che precede è  una Verbena prima di fiorire (prima settimana)

La foto che segue è …..la Verbena che appena inizia a fiorire…(si intravedono Cardi)

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Potentilla gialla (Potentilla reptans) con 5 petali e 10 sepali, dei quali 5 appaiono da sopra del fiore

LA POTENTILLA gialla

OLYMPUS DIGITAL CAMERA

Potentilla: Foto da rifare

OLYMPUS DIGITAL CAMERA

Fiore di N. damascena con fiori di Potentilla

L’ARTEMISIA absinthium

OLYMPUS DIGITAL CAMERA

IL PROBLEMA DELLA COMPOSITA D’AGOSTO DA CLASSIFICARE

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

…Composite che iniziano con un unico stelo breve rigido con grosso capolino e foglie lanceolate spesse e un po’ pelose e seghettate….

….e, ancora, la Borraginacaea Echium vulgare (erba viperina)…

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Non abbiamo incontrato ancora la Borraginacaea Anchusa

Seguono le foto del Cardo dei lanaioli (Dipsacus fullonum)

OLYMPUS DIGITAL CAMERA

Piantina del cardo

OLYMPUS DIGITAL CAMERA

Cardo dei Lanaioli?

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Frutti del cardo oggi 18-6

OLYMPUS DIGITAL CAMERA

Le grandi foglie opposte, che si saldano alla base, formano una coppa che raccoglie una piccola riserva di acqua piovano o di rugiada condensata

OLYMPUS DIGITAL CAMERA

Dipsacus fullonum

OLYMPUS DIGITAL CAMERA

Scabiosa, Knautia arvensis: foglia basale e superiore; foto della pianta da rifare

OLYMPUS DIGITAL CAMERA

Knautia arrvensis

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Cicoria: diffusa nel percorso

OLYMPUS DIGITAL CAMERA

Campanule

OLYMPUS DIGITAL CAMERA

Malva silvestrys

OLYMPUS DIGITAL CAMERA

Fiore di Cicoria e di Malva silvestre con foglia della malva

——————————————–

SEGUONO LE FOTO DEL Camedrio

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Camedrio

OLYMPUS DIGITAL CAMERA

Camedrio

OLYMPUS DIGITAL CAMERA

—————————————–

L’Iperico perforato

OLYMPUS DIGITAL CAMERA

rametto di Iperico e di Camedrio

DIARIO FLORISTICO AGGIORNATO AD OGNI VISITA NEL CORSO DEL MESE DI LUGLIO 2015

Tutte le foto, se non sono nominati altri autori, sono di Piero Pistoia

Le Foto sotto della Pianticella X in fioritura in Luglio sono proposte per fare le osservazioni (sempre con ipotesi) insieme ai lettori, se ci sono, altrimenti fra noi, per classificarla. La sua stazione floristica si trova a destra, scendendo lungo la Vicinale di S. Anna, prima di una decina di metri dal bivio per il Ponsino. Fa vistosa presenza (oggi 22-luglio) sull’argine sinistro al bordo della ‘recinzione con riparo’ dell’uliveta, con altezze max fino a quasi 2 metri. Altra nuova piantina è la Silene, piccoli steli spesso affastellati, in Luglio in fiore, che crescono insieme all’Achillea ‘cartellata’ in Giugno, oggi con semi, presso il cancello chiuso da tempo del campo sportivo in via del Poderino. Ne vedremo le caratteristiche classificative. Rimangono ancora alcune pianticelle di Verbascum Blattaria sul poggio dopo il P. Ponso e davanti al P. S. Domenico (controllare le caratteristiche di classificazione); molto diffusa è ancora la Cicoria, l’altro Verbasco con foglie pelose larghe ondulate alla base (vedere foto rosetta di base) e con caule ramoso (quasi, a colpo d’occhio, a candelabro ebreo spaziale), ancora non nominato, ma presente anche a giugno, come vedremo. Il Verbascum tapsus, cartellato e nominato a giugno, si si sta spengendo con la siccità, insieme ad altre pianticelle di giugno morte o sofferenti (Plantago minor, il Camedrio, la Potentilla, l’Iperico, la Nigella, l’ombrellifera ‘Terentis’, la Chlora, il Camedrio che nel contempo era apparso anche sull’argine presso il bivio per il P. San Pietro,…); una pioggia a fine luglio potrebbe migliorare la situazione. In luglio una nuova Ombrellifera da studiare. Vedremo. Una nuova Asteracea, che somiglia al fiordaliso, è apparsa in luglio ed è visibile, scendendo lungo la sterrata per qualche centinaio di metri dopo un primo cartello per il P. Il Mirto, posto su una quercia a sinistra subito dopo P. Poggio Bartolino, distante 5-6 metri dal tasso barbasso ormai seccato sulla sinistra, ad una decina di metri dal ‘passello’ verso l’argine sempre a sinistra per il poggio; ancora da osservare e studiare. In giugno era apparsa sull’argine a sinistra una pianticella analoga subito prima del cancello del P. Poggio Bianco, al bivio per P. Il Mirto. Al podere Ponsino è apparsa improvvisa la pianta-fiore dell’Agave da ammirare!

OLYMPUS DIGITAL CAMERA

Agave fiorita

ALTHEA cannabina
ALTHEA cannabina

IL PROBLEMA DI UNA MALVACEA IN LUGLIO: L’ANTHEA cannabina

OLYMPUS DIGITAL CAMERA

Tavola delle caratteristiche da noi  osservate della Piantina X: le altezze delle piantine raggiungono oltre 1.5 metri; foglie alterne palminervie (da un centro alla periferia), sopra più lucide, stipolate; le foglie inferiori sono sub-orbicolari, le superiori 1-2 pennato-partite (polimorfismo fogliare); fiori con calicetto esterno più piccolo; calice interno più grande i cui sepali, sembra, andranno a costituire la capsula dei semi; i 5 petali, piuttosto larghi, tendenzialmente separati (corolla dialipetala), con unghia breve rispetto al lembo terminante piatto e crenato, sono alternanti alle punte del calice; nella capsula del seme, i semi singoli sono ‘agganciati’ a ‘ciambella (fig. 1789) Da aggiungere la descrizione dei colori del fiore, degli stami e dell’ovario.

DIGRESSIONE SULLE FOGLIE PALMINERVIE

La foglia si dice palmata o palminervia quando ha la forma di una mano a dita aperte e le nervature sono disposte come le dita a partire da un punto che può essere l’inserzione del picciolo. Le palminervie si dicono incise o lobate secondo la profondità e ampiezza delle divisioni.

Palmato-fise: incise fino a metà della distanza margine picciolo;

Palmato-partite :incise fino a 3/4;

Palmato-sette: incise fino all’inserzione del picciolo;

Palmato-lobate: sono foglie con bordi arrotondati, allargate alla base, incide fino a metà.

VEDERE GLI SCHIZZI numerati sotto NEL TESTO: Eduard Thommen “Atlas de poche de la flore suisse”, 1961, Editions Birkhauser Bale. Ringraziamo l’autore e l’editore se ci permettono di vederli in questo blog di frontiera fra scolastico ed extra scolastico, dove, senza fini di lucro, si tentano nuove vie di ‘costruire’ conoscenza, almeno nella nostra intenzione.

1789 Malva alcea con struttura a ‘ciambella’, come tutte le Malvaceae, dei  semi all’interno della capsula.

1790 Malva moschata.

1991 Malva silvestris.

L’ESPERTO, L’ERBORISTA ANGELO BIANCHI, HA SUGGERITO IL NOME PROBABILE DELLA FAMIGLIA E FORSE DEL  GENERE:

Famiglia: MALVACEAE

Genere: MALVA, ma vedremo meglio

OLYMPUS DIGITAL CAMERA

Cocche in struttura, calice e calicetto della piantina X

OLYMPUS DIGITAL CAMERA

Piantina X: anche cocche isolate glabre con chiare rughette trasversali

I DUE DISEGNI CHE SEGUONO si possono vedere  usando il numero nel testo: Pietro Zangheri “Flora Italica II”, pag. 77, CEDAM-PADOVA.

Questo blog è senza alcun fine di lucro, e tenta di sperimentare vie anche nuove per ‘costruire’ conoscenza.

2808: Anthaea cannabina (Malva canapina); calicetto con 7 punte e calice con 5 punte

2806: foglia medio-superiore della Althaea cannabina che ha foglie verdi lucide sopra e più pallide sotto, le inferiori sono palmato-partite a 5 lacinie, le medie e superiori palmato-sette (2806), antere rosso porporina; cocche (mericarpi glabr i) rugose sul dorso.

IL DISEGNO dell’ Altea cannabina  è visibile nel TESTO: Sandro Pignatti “Flora d’Italia vol. II”, Edagricole , alla trattazione della FAM. 90: Malvaceae (pag. 92).

Si lascia al lettore interessato l’onere di confrontare le caratteristiche osservate riportate nelle nostre foto e/o rilevate da lui stesso sul campo direttamente, con quelle riportate nei testi di filtro da noi nominati od altri a sua disposizione, onde ipotizzare una plausibile specie per la piantina X.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Rametto terminale fiorito della pianticella X

OLYMPUS DIGITAL CAMERA

Parte centrale-terminale pianticella X

OLYMPUS DIGITAL CAMERA

Parte inferiore pianticella X

OLYMPUS DIGITAL CAMERA

Particolari Pianticella X in luglio

OLYMPUS DIGITAL CAMERA

Foglia abbastanza inferiore sopra e sotto

OLYMPUS DIGITAL CAMERA

Fiore, petalo, frutto e foglie centrali-sup.

OLYMPUS DIGITAL CAMERA

Fiore della Pianticella X da ingrandire

OLYMPUS DIGITAL CAMERA

Foto delle piantine X; sullo sfondo il sentiero per il Ponsino

——————————————————–

L’Ombrellifera di luglio (da classificare)

OLYMPUS DIGITAL CAMERA

Ombrellifera  X

OLYMPUS DIGITAL CAMERA

Aspetto dell”Ombrellifera X di Luglio; capolini che tendono a contrarsi a nido d’uccello

OLYMPUS DIGITAL CAMERA

Infiorescenza vista da sotto

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Infiorescenza vista da sopra; da notare la piccola formazione scura al centro

OLYMPUS DIGITAL CAMERAFoglie della Umbellifera di luglio; siamo in Attesa di fotografarne il seme

VERRA’ CLASSIFICA A SETTEMBRE DA CRISTINA

————————————————————-

SCROPHULARIACAEA VERBASCUM sinuatum

VERBASCO DIFFUSO IN LUGLIO

OLYMPUS DIGITAL CAMERA

VERBASCO diffuso a luglio

OLYMPUS DIGITAL CAMERA

Il Verbascum molto più diffuso di luglio nel percorso: rosetta basale

(vedere foto precedente)

OLYMPUS DIGITAL CAMERA

Rosetta basale del Verbasco sinuatum di luglio-agosto e foglie della Umbellifera di luglio

———————————————————————–

L’esperto botanico, l’Erborista Angelo Bianchi ha classificato la nuova asteracea di luglio, prima individuata e segnata lungo il percorso e sotto fotografata, come Centaurea jacea (detta fiordaliso stoppione). La seguiremo anche in agosto e ne vedremo le caratteristiche. Sembra ci siano due sottospecie della C. jacea secondo la larghezza delle foglie: l’una max 1 mm e l’altra 6-7 mm (Cristina).

OLYMPUS DIGITAL CAMERA

Centaurea jàcea (fiordaliso stoppione). Esisterebbero (Cristina)  almeno due subspecie in funzione di foglie strette e  larghe.

________________________________________________________________________

INTERMEZZO SULLA C. jacaea

Il 18-0tt. spedii a Cristina Anna una e-mail  di cui trascrivo una parte riguardante la jacea:

<<…ti allego qualche foto di due piantine, raccolte a distanza di pochi dm, che ho colto nella Macchia di Monterufoli ieri; probabilmente si tratta di una Composita e forse del genere Centauraea; per la specie si tratta di un’unica specie (per es., C. jacaea) o di due specie diverse? L’una ha foglie a lacinie (largh. max circa 1 mm); l’altra ha foglie lanceolate ruvide al tatto e leggermente spatolate (Largh. max  6-7 mm); circa uguali in lunghezza; forse stesso  stadio di fioritura…>>. Ecco le foto:

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Fine intermezzo

_________________________________________________________________________

IL PERCORSO E LE PIANTINE DI AGOSTO

ABBIAMO TENTATO GIA’ DI DESCRIVERE IL PERCORSO BOTANICO DI AGOSTO, MA CON SORPRESA LO SCRITTO E’ SCOMPARSO PER DUE VOLTE: PROVIAMO ANCORA UNA VOLTA!

In agosto si sono alternate settimane molto piovose ed altre di un caldo afoso. Questo ha permesso la ricrescita di alcune piantine scomparse o regredite in luglio e rifiorite a fine Agosto (per es., l’Iperico, la Plantago, alcune composite, ecc.). Altre sono esplose diffondendosi ovunque come la Verbena, i Finocchi, il Verbascum sinuatum. E’  fiorita un’altra Centaurea jacea verso il poggetto del Ponso, a sinistra salendo dal P. San Vittore. Lungo la strada dei Filosofi sta diffondendosi la Scrofulariacaea Linaria vulgare di agosto. (Vedere foto sotto). Da studiarne i particolari.

La Scrofulariacaea Linaria vulgare di Agosto

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

La Scrofulariacaea Linaria

————————————————–

Davanti al P. San Vittore è presente un denso cespuglio spinoso forse di Cirsium, una nuova pianticella di agosto (vedere foto sotto). Da studiarne i particolari.

L’Achillea millefolium di San Vittore ha i semi. mentre quella di via del Poderino, presso il cancello dello stadio, è stata tagliata insieme alla Silene e il cartello in peralluman è sparito! Ci auguriamo che non venga gettato in discarica, ma che serva al suo possessore per attivare la sua curiosità per questo mondo povero della botanica spontanea. Sarebbe la sua migliore fine, perchè è lo scopo per cui è stato costruito!

PROBLEMA DEL CIRSIUM DI AGOSTO

OLYMPUS DIGITAL CAMERA

L’Astreacaea Cirsium (?)  del P. San Vittore; ipotesi sul genere e sulla  specie (TT di Popper) di P. Pistoia: pannonicum o monspessulanum; da controllare (EE di Popper). Si confronti intanto con i disegni numerati sotto in E. Thommen (opera citata).

Disegnivisibili in Eduard Thommen (opera citata)

2835 – Cirsium monspessulanum

2836 – Cirsium pannonicum

In effetti le foglie non sono decorrenti al fusto e la ‘radice’ stolonica con semplici radicette! Forse l’ìpotesi non è corroborata! Vedremo tentativi successivi di ipotesi.

E’ stato interpellato il nostro erborista Angelo Bianchi, che ha avvallato l’ipotesi del genere (Cirsium) ed ha proposto come specie, C. arvense.

L’involucro a ‘bicchiere’, le  foglie pennatofide, la presenza di una infiorescenza aspetti notabili nei disegni forse potrebbero suggerire che la nostra pianticella possa essere una varietà del C. arvense. Una investigazione su un fiore singolo (presenza di 5 lacinie nella corolla), chiarirebbe intanto la questione del genere. Si apre una discussione.

DISCUSSIONE APERTA SULLA NOSTRA SPECIE DEL Cirsium

Piero Pistoia – In effetti, specialmente la parte alta della pianticella. che ad occhio presenta lunghi steli dei capolini, terminali  e solitari, e piccole e regolari foglie quasi intere (più oblungo-lanceolate) leggermente spinose, praticamente senza infiorescenze…, rendono il nostro Cirsium , almeno in apparenza, più elegante e meno selvatico del C. arvense di riferimento (vedere disegni); ciò si conferma anche osservando lo stesso involucro non a forma di bicchiere di vino (tozzo a pareti verticali o quasi), ma piccolo e delicatamente allungato mentre si restringe verso l’alto. Forse si può concludere che il nostro Cirsium arvense sia una varietà della specie standard. Insomma la nostra pianticella ha svariate  caratteristiche appartenenti alla zona di intersezione fra diverse specie di Cirsium e ciò mi porterebbe a formulare un’ipotesi fortemente azzardata, ma per questo profondamente scientifica (alta falsificabilità), cioè che si tratti di una nuova varietà.

Altri disegni da controllare in:

Eduard Thommen (opera citata)

2833 – Cirsium arvense

2834 – Cirsium palustre


…. e in Pietro Zangheri (opera citata)

5469 – Cirsium arvense; fiore singolo con ovario e pappo

5470 – Cirsium arvense; cima fiorita e foglie chiaramente pennatofide (incise fino a metà distanza bordo-asse

 

————————————————-

CONFRONTARE I DISEGNI PRECEDENTI CON LE FOTO DEL CIRSIUM CHE SEGUONO (ESEGUITE DA P. PISTOIA)

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

La foglia in basso a destra con 8 fori ha lunghezza 7.3 cm e larghezza max 1.8 cm

OLYMPUS DIGITAL CAMERA

Foglie inferiori pennatofide

OLYMPUS DIGITAL CAMERA

Foglie inferiori più pennatofide

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Capolino con foglie prese a diverse altezze sul caule

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Foglie tendenzialmente meno pennatofide (più ovali-lanceolate); capolini eleganti

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Capolini isolati su steli fioriferi

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Foto delle blattee dell’involucro (dim. L. da 2-3 a 10-11) del Cirsium; la  punta scura sembra che continui in un dorsale nera. Alla lente danno l’impressione visiva di un aglio stretto visto dal dorso.

INTANTO SIAMO ARRIVATI AI PRIMI DI  SETTEMBRE.

Gli ultimi temporali hanno modificato qualcosa nel percorso. Fra il P. Sant’Anna e P. San Vittore, in particolare presso il ‘pelago’ del P. San Vittore è esplosa la comunità della pianticella che abbiamo classificato come Centaurea jacea, che fa bella vista al bordo del piccolo laghetto del podere.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

IL FIORDALISO STOPPIONE : fiore lilla invece di celesteOLYMPUS DIGITAL CAMERA

Si stanno diffondendo rapidamente le gialle Linarie, mentre sta regredendo la fioritura del Verbasco a ‘candelabro’ e l’altra Scrofulariacaea Echium. Si iniziano a vedere i piccoli capolini gialli della Composita, già diffusa, Inula viscosa. Altre piccole composite hanno invaso il percorso da classificare. Sporadicamente è ricresciuto qualche Verbascum blattaria con un solo fiore e qualche Iperico giallo stellato; occhieggia ancora qualche fiore di Cicoria  insieme alle piante grigiastre con i suoi semi. L’Achillea, dove era rimasta, mostra i suoi frutti nerastri sporchi; si nota ancora qualche rara capsula di Nigella damascena. La piantina spinosa che abbiamo riferita al genere  Cirsium si è estesa per qualche metro quadro dal bordo strada verso il campo proprio davanti al P. San Vittore e sta ancora fiorendo in attesa di un nostro studio più approfondito sul seme ed il pappo ed altro. Al poggio Il Ponso, verso il campo, si notano fioriture abbondanti di Calamintha nepeta (armai diffusa ovunque) e qualche pianta rimasta da tempo di Salvia selvatica. Qua e là, dove erano, si nota ancora qualche Verbascum Blattaria ormai con i semi. Diffusa è anche la Verbena officinalis, il finocchio e anche l’Althea, nello stesso posto qualcuna ancora in fiore. Continua la diffusione dell’Ombrellifera di agosto che ancora dobbiamo classificare, perché nessuno fin’ora si impegnato a farlo.

————————————————————

INIZIO PROPOSTA PER UNA TENDENZA A CAMBIARE ‘POLITICA’ NEL POST

Chi ha scritto fin’ora sul post, cercando di alimentare le discussioni ed ordinando le diverse informazioni e foto, ha problemi familiari e di tempo, per cui ha scambiato le seguenti email con la co-curatrice Cristina Anna Moratti, cercando di modificare la politica del post in corso.

PIERO P.-CR1-> contenuto inviato a Cristina per e-mail (DA RIPORTARE E CONTINUARE)

LA CLASSIFICAZIONE DELLA OMBRELLIFERA DI LUGLIO AGOSTO

Cristina Moratti, interpellata oggi (11-sett;11.30; oggetto: lavoro da svolgere sul percorso botanico), ha formulato un’ipotesi sull’Ombrellifera (Apiacea) di Luglio-Agosto ancora da classificare. Dovrebbe trattarsi di una Daucus carota non per le sue foglie molto variabili in questa specie*, ma per la presenza dei piccoli ‘fiorellini’ scuri al centro dell’infiorescenza, perché, afferma Cristina, ciò è tipico della carota selvatica, anzi è uno dei pochi segni che portano alla sua identificazione**. La pianta comunque, se stropicciata, profuma di carota. L’altra Asteracea con infiorescenza gialla, fotografata e descritta a giugno, ancora presente anche se rara, ma non ancora classificata, afferma ancora Cristina, potrebbe essere un Asteriscus spinosus (Pallenis spinosa).

CR-PIERO1 -> contenuto inviato da Cristina a Piero in risposta alla e-mail precedente (PIERO-CR1) (DA RIPORTARE E CONTINUARE)

*In effetti confrontare le foto delle foglie dell’Umbellifera  nel ‘diario’ di luglio con la Carota selvatica riportata sui testi di riferimento….

**Altri segni potrebbero essere la radice a fittone anche se non molto sviluppata, la contrazione dell’ombrella a nido di uccello, il numero dei raggi dell’ombrella e dei fiori per ogni raggio, la forma del seme, la forma delle stesse foglie ed altro. Vedere per es., gli schemi da riprendere dai testi di riferimento (potrebbero essere aggiunti). Vedere anche le tre foto successive della D. carota un po’ appassita fotografata oggi.

OLYMPUS DIGITAL CAMERA

D. carota radice

OLYMPUS DIGITAL CAMERA

D. carota: piantina media; rami e foglie

OLYMPUS DIGITAL CAMERA

D. carota: pianta terminale; rami, foglie e infiorescenze mature (ombrella completamente contratta). Sarebbe interessante riuscire a fare foto dei semi chiare. In molti casi la forma del seme è probabilmente l’elemento più decisivo nella classificazione.

Ci sono comunque oggi a settembre, altre composite ‘povere’, alcune molto diffuse, diverse  dall’Inula viscosa ed altro da classificare! (vedere foto sotto). Basta seguire il percorso, osservare, formulare le ipotesi e seguire i processi di controllo. 

PIERO-CR2 -> Su alcune foto  seguenti aggiunte a settembre (il procedere descritto dall’aforisma sul gatto) DA RIPORTARE E CONTINUARE

LE SUCCESSIVE SETTE FOTO RIGUARDANO UNA DELLE PIANTINE PIU’ DIFFUSE NEL PERCORSO

(La prima foto è di Cristina Anna Moratti)

Erigeron bonariensis piantina con pappi

OLYMPUS DIGITAL CAMERA

Composita

OLYMPUS DIGITAL CAMERA

Particolare della precedente. E la piantina a sinistra?

OLYMPUS DIGITAL CAMERA

composita uguale alla precedente. E la pianticella a sinistra e dietro?

OLYMPUS DIGITAL CAMERA

Composita uguale alla precedente. E la pianticella a sinistra e dietro?

OLYMPUS DIGITAL CAMERA

Composita uguale alla precedente

OLYMPUS DIGITAL CAMERA

Stessa della precedente

———————————————–

OLYMPUS DIGITAL CAMERA

Piantina con infiorescenza a ‘bruco scorpioide’; fiori bianchi a 5 petali (almeno nel ricordo)

OLYMPUS DIGITAL CAMERA

Uguale alla precedente

CR-PIERO2 -> e-mail sulle precedenti foto ed altre in settembre (DA RIPORTARE E CONTINUARE)

PIERO-CR3-> e-mail sulla sintesi sulla proposta, motivata anche da ragioni teoriche, per il cambiamento di politica sul post. (DA RIPORTARE E CONTINUARE)

TERMINE DELLA PROPOSTA PER UNA TENDENZA A CAMBIARE ‘POLITICA’ NEL POST

——————————————————————-

ANCORA DA ORGANIZZARE LE FOTO DELLE E_MAIL DI CRISTINA

RIFLESSIONI CRITICHE E PERCORSI PER ACQUISIRE DIMESTICHEZZA EMPATIA ED EINFUNLUNG SULLE SPECIE PROPOSTE DA CRISTINA MORATTI

Cerchiamo di costruire le idee  di questi ‘oggetti’ nella mente a partire dalle ipotesi di Cristina

Osserviamo intanto da vicino l’Inula viscosa  o Cupularia viscosa (ceppica; da noi detta ceppita)

OLYMPUS DIGITAL CAMERA

Da notare le cime a pannocchia densa di fiori gialli

Inula viscosa pannocchia

Pianta perenne. suffruticosa con fusto eretto, legnoso alla base con foglie che si riducono salendo lungo il caule; capolini  (1-1.5 cm) numerosi con pannocchia ricca.

OLYMPUS DIGITAL CAMERA

RAMO FIORITO TERMINALE; FOGLIE INTERMEDIE; FORMA DELLE FOGLI E FIORE

OLYMPUS DIGITAL CAMERA

Foglie più o meno vischiose e oblungo-lanceolate debolmente crenate sessili o semi-abbraccianti; fiori con una decina di ‘petali’ al capolino (cioè petali dei fiori periferici esterni raggianti a linguette lunghe rispetto all’involucro – da descrivere e del quale ora manca la foto); se strofinata emette un odore aromatico poco gradevole; da continuare (aggiungere qualche disegno schematico).

SCHEMI DELL’Inula viscosa (seme e pianta) visibile nel TESTO DI P. Zangheri (Cedam; opera citata) e NEL TESTO DI S. PIGNATTI (Edagricole, opera citata)

Osserviamo anche la Composita gialla con fiori giallo-dorati spesso associata all’Inula che presenta molti più ‘petali’ intorno al capolino, con foglie quasi della stessa forma forse più minute e più rugose. Fusto senza rosetta basale; le foglie cauline tendono ad abbracciare il fusto con due orecchiette più o meno sporgenti (da controllare). Pianta lanoso-biancastra o mollemente tomentosa; radice non fittosa. L’ipotesi di Cristina Moratti è “Pulicaria dysenterica“, detta Incensaria comune.

Segue la bella foto di Cristina Anna Moratti del capolino della P. dysenterica

Pulicaria fiore

OLYMPUS DIGITAL CAMERA

VISIONARE LA Pulicaria dysenterica (5124) NELL TESTO DI P. ZANGHERI (Cedam, opera citata)

OLYMPUS DIGITAL CAMERA

Pulicaria dysenterica

OLYMPUS DIGITAL CAMERA

Ancora da approfondire

——————————————————-

Cristina Moratti ha classificato la piantina con infiorescenza a ‘bruco scorpioide’ come Heliantus europeus.

Eliotropio, Erba porraia; si incontra nel tratto mediano del percorso corrispondente a via dei Filosofi, scendendo sulla destra

Visionare i disegni schematici della pianticella precedente nei testi di P. Zangheri ed S. Pignatti (opera citata)

SI TRATTA di Borraginacea  cenerino pubescente, a fusti eretti fino a 40 cm; infiorescenza scorpioide densa; fiore a  calice partito, corolla imbutiforme bianca a cinque lobi;  fiori sessili; acheni rugosi.

SEGUONO ALTRE FOTO DELL’ELIOTROPIO

OLYMPUS DIGITAL CAMERA

Heliantus europeus

OLYMPUS DIGITAL CAMERA

SEGUE ANCHE LA BELLA FOTO DI CRISTINA ANNA MORATTI DELLA BORRAGINACEA DEL GENERE HELIANTUS, SPECIE H. europeum ESEGUITA  NEL PERCORSO A SETTEMBRE (particolare dell’infiorescenza).

Heliotropium infiorescenza

———————————————————

QUI L’OBBIETTIVO CONYZA o ERIGERON?
CONYZA o ERGERON?

SEMPRE DI CRISTINA sono le due foto successive della Composita molto diffusa da lei nominata Erigeron bonariensis

Erigeron bonariensis piantina con pappiPianta alta con fiori, frutti e pappi. Penso che i fiori gialli non siano dati rilevanti (non appaiono mai in altre analoghe foto e neppure negli incontri (?) sul percorso).

Erigeron bonariensis cime con fiori e pappi

_______________________________

COMMENTO DEL COORDINATORE Piero Pistoia (NDC)

Segue una foto di P. Pistoia di una specie dell’Erigeron (?) ripresa nel percorso: caule terminale con infiorescenza a pannocchia (?), fiore, frutto, foglia di base e foglia caulina. Altezze involucro 5 mm; max sezione involucro 3 mm; altezza fiore sopra involucro 1 mm.

OLYMPUS DIGITAL CAMERA

Foto di una specie dell’Erigeron (affine al genere Aster e al genere Conyza) ripresa nel nostro percorso: caule terminale con infiorescenza a pannocchia (?) di numerossimi fiori, frutti bianco-piumosi, foglia di base e foglia caulina. Altezze involucro 5 mm; max sezione involucro 3 mm; altezza fiore sopra involucro 1 mm, spessore capolino 4-5 mm.

Foglie inferiori lanceolate con qualche seghettatura verso l’alto; divengono più piccole, sottili e strette a salire.

Erigeron è composta dalle parole greche er e géron, primavera e vecchio, forse ad indicare la rapida perdita delle corolle dei fiori e delle ligule del capolino quando ci sono e il precoce apparire al loro posto delle piumosità bianche dei pappi con i quali terminano i frutti; i capolini giallini più chiari al contorno, diventano in breve ciuffi candidi. Vedere foto. Man mano che si sale lungo la pannocchia aumentano i fiori trasformati in frutti; nella parte inferiore si notano ancora i fiori giallini del piccolo capolino. Il talamo sembra convesso.

VISIONARE i disegni schematici della Composita del genere Erigeron  (da E. Thommen, (edit. Birkhauser Bale), opera citata) a partire dall’E. acer  e lo schema di E. canadensis (2653 del testo sempre di Thommen)

Dall’osservare attentamente le foto, le piantine sul campo,  partendo dall’ipotesi in prima istanza (Erigeron bonariensis), con i nostri testi di riferimento forse siamo in grado di formulare un’ipotesi di classificazione in seconda istanza, anche se abbastanza vicina alla prima.

  • Altezza fusto 1-6 dm, striato (sezione diversa dalla circolare) con peli addensati che ha radice forse a fittone e termina in una pannocchia i cui ‘rami’ a tendenza corimbosa densi di fiori sono ‘rivolti’ verso il caule accentuando la forma a pannocchia della cima.
  • Foglie inferiori lineari lanceolate, uninervie (un solo percorso centrale di alimentazione, una sola nervatura centrale) un po’ pelose; le superiori lineari strette.
  • Capolini diametro 5 mm, con involucro (altezza circa 5 mm, max larghezza 2-3 mm) formato da squame in due serie. Altezza fiori sopra l’involucro  1 mm.
  • Fiori periferici tubolari attinomorfi (alta simmetria), con 3-4 denti; assenza di ligule.

Seguono disegni schematici di riferimento per il raccontino precedente ripresi dai testi.

bonariensis0002FIORI ATTINOMORFI CIOE’ SIMMETRICI

Ipotesi in seconda istanza Conyza bonariensis (=Erigeron linifolius (foglie come quelle del lino), Erigeron crispus)

Saremmo onorati e soddisfatti comunque se un lettore interessato attivasse una propria argomentazione critica o una analisi personale dei dati forniti e di quelli da lui stesso recuperati da sue foto, da visite sul campo o dai nostri testi o da altri, o comunque dalle conoscenze a sua disposizione…., onde tentare di falsificare le ipotesi da noi proposte.  In questo consiste il processo scientifico e in particolare l’obbiettivo più importante di questo blog! ed è questo il significato di  “lavorare insieme per costruire conoscenza”

La piantina che appare nella foto dietro la bonariensis è in effetti un arbusto che Cristina ha classificato come Cornus sanguinaea, che sta per fiorire in questo autunno di nuovo (era fiorito anche a primavera) dopo svariate rasature.


FINE COMMENTO DEL COORDINATORE

Le due foto seguenti sono della composita ancora da classificare di Luglio-Agosto: Cristina Anna l’attribuisce alla specie “Asteriscus spinosus (Pallenis spinosa). Da commentare più in profondità (vedere in settembre)

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

DA OSSERVARE ANCHE LE FOTO DELLA SEGUENTE COMPOSITA ANCORA DA CLASSIFICARE ASSOCIATA ALL’INULA E ALLA PULICARIA

(Presso il poggetto del Ponso)

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

CIMA CORIMBOSA densa di capolini gialli

OLYMPUS DIGITAL CAMERA

Fusto eretto (H fino a 60-70 cm). Foglie sessili diminuiscono in dimensioni procedendo verso l’alto; la forma fogliare, che ‘pensata intera’ avrebbe forma sub-ovale, varia da pennato setta vicino al caule a pennato fisa o seghettata.

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Piantina da classificare associata a Linula  e Pulicaria

OLYMPUS DIGITAL CAMERA

Cima tendenzialmente corimbosa densa di capolini

Cristina Anna Moratti ha guardato le precedenti foto dell’Asteracaea da classificare; durante una sua visita al percorso in settembre, ha eseguito, sempre della stessa specie, anche  le due belle foto dal vivo relative all’infiorescenza con capolini e della foglia che seguono  e le ha classificate in prima istanza come appartenenti a Senecio jacobaea (Jacobaea vulgaris).

senecio1_fiore
senecio2

DA SINISTRA A DESTRA SEGUONO LE FOTO DI TRE CAPOLINI A CONFRONTO APPARTENENTI RISPETTIVAMENTE ALLE SPECIE CLASSIFICATE DELLA LINULA, DEL SENECIO E DELLA PULICARIA

OLYMPUS DIGITAL CAMERA

Da notare i capolini di Linula che ha fiori mediamente più piccoli delle altre due specie. Simile è il numero delle ‘ligule’ del capolino (poco più di 10) nelle prime due specie; molto più alto nella terza, più raggiate e stellari.

SEGUE LA FOTO DELLE FOGLIE RIFERIBILI RISPETTIVAMENTE ALLE TRE PIANTINE A CUI SI FA RIFERIMENTO NELLA FOTO CHE PRECEDE

OLYMPUS DIGITAL CAMERA

DA RIFARE

OLYMPUS DIGITAL CAMERA

Dal basso: foglie di Linula, Pulicaria, Senecio

————————————————–

Durante la stessa visita Cristina Anna ha fotografato anche un’altra piantina di Asteracaea (le due foto dal vivo di un capolino e del gruppo di piantine) che ha classificato in prima istanza come appartenenti alla specie Cota tinctoria (Camomilla dei tintori). Manca il riferimento alla zona del ritrovamento, perchè non è diffusa come altre.

cota1Si vedono male le foglie

cota2

P. Pistoia ha eseguito la seguente foto delle foglie della Cota  (uno dei pochi esemplari del percorso a settembre) raccolte nel tratto di Via dei Filosofi, scendendo sulla destra, a pochi metri dal bivio con la vicinale S. Anna

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

———————————————————-

LA NUOVA COMPOSITA DI FINE SETTEMBRE

Foto di piantina osservata lungo la vicinale Sant’Anna scendendo, sotto il grosso cipresso sulla sinistra all’ingresso del podere vecchio e proseguendo a sinistra, davanti al casolare nuovo dello stesso nome. Altre piantine si rinvengono oltre Poggio Bartolino sulla sterrata per Poggio Bianco. E’ stata raccolta  e trasportata divenendo un po’ appassita.

Seguiranno foto dal vivo

Da osservare il fiore terminale sembra senza ligule o non ancora aperto.

OLYMPUS DIGITAL CAMERA

Caule eretto, liscio, ramoso per lo più  in alto, capolino molto piccolo apicale bianco-giallino (1-1.5 mm al di sopra della ‘copertura’ esterna (involucro) allungata, alta circa 6 mm e larga max 2 mm).

OLYMPUS DIGITAL CAMERA

Come sopra

OLYMPUS DIGITAL CAMERA

Come sopra

OLYMPUS DIGITAL CAMERA

Parte finale della piantina; foglie lisce, semplici, uninervie, lanceolate avvolgenti un caule liscio (decorrenti per qualche cm), più piccole e strette verso l’alto; la  radice appare  a fittone. Altezza max circa 50-60 cm. Qui si sono aperti i fiori. Fiori periferici con piccole ligule bianche che si aprono solo parzialmente all’esterno (rimangono, almeno per ora, un po’ a guisa di ‘corona’); max ampiezza fiore composto fino a circa 7-8 mm.

OLYMPUS DIGITAL CAMERA

Rametto fiorito con piccole ligule bianche, ora sembrano più aperte, che contornano un piccolo interno giallino (diametro capolino 8 mm circa).

OLYMPUS DIGITAL CAMERA

come sopra

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

SEGUONO FOTO DAL VIVO

OLYMPUS DIGITAL CAMERA

Parte superiore pianta

OLYMPUS DIGITAL CAMERA

Parte inferiore pianta

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

La pianticella dal vivo di fine settembre inizio ottobre

Cristina ha classificato la piantina come un’Asteracaea, appartenente al genere Symphiotrycum squamatum (=Aster squamatus), nome comune: Astro Autunnale.

Confrontando le foto e la loro descrizione e le caratteristiche dell’Aster Squamatus, si conclude che l’ipotesi è corroborata (nel senso popperiano di ‘temporaneamente verificata’).

Riassumiamo la descrizione:  fusto eretto che inizia da una radice a fittone e termina in un ramoso corimbo aperto; foglie inferiori lisce, semplici, uninervie, lanceolate avvolgenti un caule liscio, decorrenti per qualche cm (la_max per lu=1x circa 8 cm), più piccole e strette acute verso l’alto; foglie sui  rami fiorali (1×8 mm), involucro stretto conico_cilindrico allungato con squame a lesina da calzolai in varie serie, nere in punta (aggiungere foto involucro); fiori ligulati piccoli bianchicci; capolino circa 7-8 mm.

————————————————-

Il Symphyotricum squamatum a confronto con Conyza (=Erigeron) bonariensis spesso associati strettamente in tratti del percorso (verso Poggio Bianco, dopo il cartello rimasto del Verbascum tapsus seccato, ultimo scorcio del percorso).

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Da notare la forma degli involucri del fiore

OLYMPUS DIGITAL CAMERA

CONFRONTO S. squamatum – C. bonriensis dal vivo

INSERIAMO QUI UN LINK con la crucifera Lepidium graminifolium, nuova rosetta di Cerithe,  Aster linòserys ed altro

SIAMO IN PIENO OTTOBRE……

IL PROBLEMA DELLA CRUCIFERA DI OTTOBRE

Ecco la prima nuova piantina da classificare; ad occhio sembrerebbe una Crucifera; forse un Erysimum? Vedremo. Sta diffondendosi rapidamente; l’abbiamo raccolta presso il podere Ponsino, ma l’abbiamo notata anche in altri punti del percorso. Seguono foto dal vivo.

OLYMPUS DIGITAL CAMERA

Crucifera da classificare

OLYMPUS DIGITAL CAMERA

Crucifera da classificare

Dopo una periodo di riflessione la precedente Brassicacea (=Crucifera) presso il Ponsino viene classificata da Cristina Anna come Lepidium graminifolium e si apre la discussionedi questa piantina seguono anche le tre foto di Cristina… e…:

Lepidium graminifolium

Lepidium graminifolium1

Lepidium graminifolium2

…e…  altre tre di P. Pistoia:

OLYMPUS DIGITAL CAMERA

Lepidium graminifolium: foglie  a diversi livelli

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Foto Lepidium pianticella intermedia

——————————————–

MA ECCO UNA PIACEVOLE SORPRESA: il 9-ottobre Cristina Anna ha notato nuove e numerose rosette di base della ‘ghiandolosa’ Cerinthe proprio dove le piante di inizio estate già adulte furono distrutte dal trattore (oggi forse potranno arrivare a rilasciare i semi, col diminuire del lavoro dei campi). Seguono tre foto di Cristina:

CERINTHE_OTTOBRE

CERINTHE_OTTOBRE1

CERINTHE_OTTOBRE2

———————————————————-

Sempre ai primi di ottobre sempre Cristina ha fotografato la Cariofillacea Dianthus carthusianorum nei dintorni del P. Ponso (da precisare)

GAROFANO1
GAROFANO2

…e il più diffuso Cyclamen hederifolium (per vedere la scheda tecnica di quest’ultimo scritta sempre da  Cristina, cercare nel sito ‘La Carrozza del Gambini’) e …

Ciclamino napol

Ciclamino napol1

Ciclamino napol2

Ciclamino napol23

 

e…. (per risolvere l’enigma dell’Alyssum), la nuova e interessante  Composita Galatella (=Aster)  linòsyris  (Astro spillo d’oro); foto riprese sull’argine  vicino Podere S. Anna.

GALATELLA2
GALLATELLA

GALATELLA1

IL PROBLEMA DELL’ALYSSUM E DELLA GALATELLA

Osservando attentamente le foto dell’Astro spillo d’oro e visitando le piantine sul campo è probabile che nel mese di giugno fosse falso il mio ricordo dell’Alyssum; in effetti quella piantina gialla  che intravidi nel 2014 durante il footing è facile invece che fosse la linòsyris! Ecco risolto l’enigma dell’Alyssum trapiantato nel Neoautoctono!

Foto di P. Pistoia dell’Astro Spillo d’oro presa davanti al P. Sant’Anna. Oggi 19-ottobre l’Astro Spillo costeggia la strada verso il P. San Domenico dalla parte della vigna.

OLYMPUS DIGITAL CAMERA

VISIONARE IN E. THOMMEN (op. cit.)  SCHEMA DELLA

GALATELLA (=ASTER) lynòsiris

——————————————————

Segue ancora una ‘erbaccia di odore sgradevole’ ripresa sul poggetto del Ponso, cresciuta in settembre che sta estendendosi a macchia d’olio; da classificare.

OLYMPUS DIGITAL CAMERA

La nostra co-autrice Cristina Anna l’ha fotografata (vedere sotto) e classificata come una Chenopodiacaea di genere Chenopodium  e specie album (Farinaccio). Alcune foto sono da cambiare.

FARINACCIO1_

OLYMPUS DIGITAL CAMERA

Fto P. Pistoia

 

FARINACCIO3

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

——————————————————

Davanti alla stazione dell’Althea, studiata in estate, da tempo rasata,  prima del P. Ponsino, sono rifiorite alcune nuove cannabine. E’ ormai completamente diffusa la Linaria gialla, il finocchio da ‘castagne bollite’ e la Calamintha nepeta. Rimane anche qualche pianticella in fiore di Verbasco blattaria (una davanti al P. San Domenico) che forse perdurerà per tutto l’inverno e qualche nuova pianticella (rosette di base) del Verbasco sinuoso e della Malva iniziale; invece continua ad essere assente il Tasso barbasso. Rimangono alcune cime annerite ‘corimbose’ piene di semi della composita Achillea millefoglio e resti stecchiti scuri e capolini anneriti di Asteriscus spinosus verso il Ponso. Sono presenti e vistose tutte le altre Composite descritte (in particolare la Linula, il Selecio e la Pulicaria). Qua là riappare qualche fiore di Scabiosa e di Cicoria. Permane negli stessi posti la Centauraea jacea ancora in fiore e il Cirsium spinoso con rari capolini. Cristina a osservato le ultime foto della Centaurea Jacaea e pensa che si tratti di C. jacaea subsp angustifolia. Rare appaiono le piantine Labiate  di Salvia selvatica e di Ombrellifere. Permane il cespuglio di Composite di Anthemis (=Cota) tinctoria vicino all’incrocio di Via dei Filosofi con la Vicinale di Sant’Anna e in altri punti a metà di Via dei Filosofi, di controversa classificazione in particolare sulle dimensioni dei capolini. Sempre scendendo a sinistra per Via dei Filosofi è riapparsa una piccola piantina in fiore di Iperico perforato. Al P. Bartolino, sotto strada, appare una distesa di grossi capolini gialli di Tupinambur (Helianthus tuberosus).

L’ARTEMISIA

All’incrocio Mazzolari-Poderino, sotto strada,  una estesa stazione di Artemisia vulgaris (?) dopo svariate rasature sta ricrescendo; al margine (vicino al grosso ulivo) si notano alte piante fino a 2 o più metri con infiorescenze (da continuare e approfondire). Questa stazione è rimasta attiva, nonostante gli svariati tagli, per almeno 35  anni sempre diffusa fra l’attuale grosso ulivo sulla strada e le piante di sambuco ed oltre lungo un buon tratto di strada del Poderino, distesa sul versante che guarda lo stadio, al di là delle auto in sosta nello sterrato. Da una ricerca che feci a quel tempo mi ricordo che la classificai come A. vulgaris, che prenderemo come ipotesi iniziale). Ma come ebbe a scrivere il grande medico naturalista  fisico vissuto in pieno 1700 Giovanni Antonio Scòpoli (testo riportato da S. Pignatti , Vol III, pag. 101, opera citata):

<<Felix ille,                                                                                                                                                                                           qui ex auctorum Artemisiis                                                                                                                                                                 se feliciter exstricaverit>>,

che in italiano suona come:  <<deve ritenersi contento l’auctor che riuscirà a disistricarsi nel classificare le Artemisie>> e parlava uno che se ne intendeva!

Comunque noi, non così qualificati, faremo un nostro tentativo nel trovare la strada e rimandiamo come sempre ai lettori interessati di farne altri.

SEGUONO FOTO DELL’ARTEMISIA (mancano esplicitamente foto dei piccoli capolini e degli involucri e forse Cristina sarebbe in grado di farle!)

OLYMPUS DIGITAL CAMERA

RAMO FIORIFERO A PANNOCCHIA STRETTA DENSO DI FOGLIE 3-4 PENNATOSETTE  SEMPLICE, LINEARI NON SEGHETTATE, SEMPRE PIU’ PICCOLE SALENDO LUNGO IL FUSTO.

OLYMPUS DIGITAL CAMERA

FOGLIE INFERIORI DELLA STESSA FORMA E RADICE STOLONICA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

DESCRIZIONE DELLA PIANTA – Fusti eretti rigati alti fino almeno a due metri, legnosi in basso con  rami terminali fioriferi; foglie pennatosette, glabre e scure sopra e bianco-tomentose di sotto; le inferiori (circa 9 cm x 10 cm) con  tre-quattro lacinie lineari poco dentate (quasi intere) per lato; verso l’alto tendono a diminuire di area; capolini quasi sessili, forse a coppa (1-1.5 x 3 mm) in pannocchia fogliosa stretta pendula; radici stoloniche  superficiali. Odore debole e poco gradevole.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

FOTO DAL VIVO

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

LO SCORCIO DI STRADA A SINISTRA INDIVIDUA L’INCROCIO FRA VIA DEL PODERINO CON VIA DON MAZZOLARI (quest’ultima indicata dalla freccia)

VISIONARE SCHEMI DELLA A. vulgaris IN S. PIGNATTI VOL III, PAG. 103,  EDAGRICOLE  E DA THOLMENN (op. cit.)

VISIONARE SCHEMI DELLA Artemisia. verlotorum (A. DEI FRATELLI VERLOT) IN S. PIGNATTI VOL III, PAG. 103,  EDAGRICOLE  E DA THOLMENN (op. cit.).

2754 A. vulgaris

2755 A. verlotorum

da E. THOMMEN “Atlas de poche de la flore suisse” Editions Birkhauser Bale

RAPPORTO PROTOCOLLO-SPERIMENTALE /IPOTESI NEL NOSTRO CASO (da chiarire)

A. vulgaris differisce da A. verlotorum solo per alcuni aspetti: quelli ‘sperimentati’ – vedere foto – sono 1) la radice di A. verlotorum è stolonica; 2) le sue foglie sono tendenzialmente intere e scarsamente seghettate; 3) il suo involucro appare forse leggermente più corto tondeggiante, ma non ovoidale; la sua pannocchia è forse più stretta. L’aspetto di confronto incerto è il profumo che nell’esperimento (pianta stropicciata ed annusata) è assente o sgradevole.

CONCLUSIONI

La mia ipotesi proposta all’inizio ‘risulterebbe’ falsificata; è preferibile l’ipotesi che la piantina sia una Composita il cui genere sia Artemisia e la cui specie sia A. verlotorum (ipotesi corroborata). L’efficacia delle nuove ipotesi non obbediscono a nessun trucco se non quello di contenere più ‘elementi di verità’ di quelli delle ipotesi precedenti rispetto a un quadro di riferimento.

Nel mondo complesso, sosteneva K. Popper, se leggiamo fra le righe, ogni ipotesi è da ritenere falsa; per procedere nella conoscenza è necessario, se corroborata, tentare di falsificarla con ogni mezzo toccando ‘il reale’, qualsiasi cosa voglia significare, cioè  ‘sbucciando la cipolla’  del territorio complesso in studio, sempre più in profondità.

—————————————-

ECCO LE FOTO RIPRESE IL 18 OTTOBRE

OLYMPUS DIGITAL CAMERA

Linaria officinalis sempre più diffusa (foto in via dei Filosofi)

OLYMPUS DIGITAL CAMERA

Symphyotricum squamatum ed Erigeron bonariensis, piantine con frutti in Via dei Filosofi

——————————————————

OLYMPUS DIGITAL CAMERA

E’ rinata l’Erba Querciola (Camedrio; Teucrium camedris) sull’argine del P. Sant’Anna e presso la  deviazione per il P. S. Pietro, dove appaiono anche tracce delle estive piantine con semi anneriti.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Erba Querciola (Camedrio); si intravedono vecchie piantine con semi sul calcare conchigliare del Pliocene medio dell’argine subito dopo il bivio per il P. San Pietro

OLYMPUS DIGITAL CAMERA

————————————————–

OLYMPUS DIGITAL CAMERA

Rinate rosette di Spirea-Filipendula (foto sull’argine del P. Sant’Anna con etichetta)

OLYMPUS DIGITAL CAMERA

Rametti di Ulmus campestris sopra rosette nel fossetto di Filipendula exapetala presente in ottobre davanti all’argine del P. Santa’anna.

OLYMPUS DIGITAL CAMERA

Caratteristiche delle foglie dell’Ulmus campestris che partono sfasate a partire dal picciolo.

OLYMPUS DIGITAL CAMERA

Rosette di filipendula nel fossetto al di là della strada davanti all’argine del P. Sant’Anna, sotto gli aceri.

OLYMPUS DIGITAL CAMERA

Foglie di Filipendula sotto e di Millefollio sopra

Rosette basali di Achillea millefolium sono ora rinate abbondanti nel fossetto lungo strada al Podere San Vittore, salendo a sinistra, proprio sotto i corimbi delle piante precedenti già rammentati, maturati durante l’estate ormai rinsecchiti ed anneriti, ma ancora presenti a sovrastare quelle del giardino. Seguiranno foto.

OLYMPUS DIGITAL CAMERA

Rosette di base di A. millefolium nel fossetto sotto l’argine del P. San Vittore nate dai semi delle poche piantine estive sovrastanti descritte in luglio, che ancora esistono rinsecchite e con corimbi anneriti.

OLYMPUS DIGITAL CAMERA

L’argine del P. San Vittore su cui esistevano in luglio le achillee in fiore, ricresciute in rosette nel fossetto alla base, oggi in Ottobre. Ingrandendo si nota ancora qualche ‘corimbo’ rinsecchito di Achillea. La strada sale sul poggetto del Ponso.

————————————————-

OLYMPUS DIGITAL CAMERA

Si tratta di una Olivacaea: Ligustrum vulgare, classificato da Cristina, a foglie lanceolate ‘tenere e lisce ‘e semi-caduche davanti al P. San Domenico con bacche nere mature. Avevamo proposto l’ipotesi del Lillatro su  ‘l’idea’ sbagliata che avevamo di esso!

OLYMPUS DIGITAL CAMERA

Il Ligustro qui davanti al P. San Domenico è associato ad altre piante della macchia mediterranea (Pistacea lentiscus, Ulmus campestris, Quercus ilex, l’Alaterno, il Viburno, …). Questo fitto ‘arbusteto’ è anche intrecciato con la Lianacea spinosa Smilax aspera (Roghetta-stracciabrache) della quale Cristina a fine ottobre ha notato una seconda vistosa fioritura, invece di <<mostrare i grappoli con le sue belle bacche lucide>> come avrebbe dovuto. La S. aspera è ricordata in paleo-botanica perché, insieme ad altre piante, (per es., l’Alloro, la Palma nana…), rimasero indietro alle nostre latitudini, nella lenta migrazione in tempi geologici delle piante dal Polo verso l’equatore. Segue la foto di Cristina di Smilax in fiore:

Smilax aspera

…e le foto delle foglie della Smilax mosse dal vento, di P. Pistoia

OLYMPUS DIGITAL CAMERA

…. e la foto di alcune foglie dell’ “arbusteto” al P. San Domenico

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

(?) Vinca major (Cristina)

——————————————————

DIGRESSIONE PER CORREGGERE LE IDEE CHE CREANO DEFAILLANCE

Seguiranno foto (anche di Cristina) e disegni schematici  per il confronto con le altre due Oleacaee del genere Fillirea (F. angustifolia e latifolia) o Lillatro e con altre, con bacche e piccoli frutti, della macchia mediterranea.

Come nasce un’idea sbagliata?

Intanto la piantina della foto sotto è un Lillatro latifolia? Se sì, questa è la sola idea che avevamo del Lillatro. Non avevamo mai visto il Ligustro, nè il il Lillatro a foglia angusta, ne consegue……. una ‘ipotesi tentativa’ da falsificare. Se poi la risposta è negativa non avevamo mai visto nè un Lillatro nè un Ligustro, avevamo così ‘sparato’ una ‘ipotesi tentativa’ praticamente a caso (ipotesi debole), anche se per Popper, ipotesi scientificamente fondata.

Proponiamo due foto di un presunto Lillatro. Si tratta di un Lillatro a foglia larga? Come si presenta quello a foglia stretta?

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

I rametti riportati sotto sono dell’Oleacaea Fillirea latifolia?

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

———————————————–

Proponiamo a tempo debito agli autori del post in questa digressione una carrelata sulle piante della macchia mediterranea a piccoli frutti . Il percorso da seguire potrebbe essere quella accennato per l’Alisso; cioè scrivere un articolo con un Word Processor (da spedire per e-mail o da immettere direttamente dall’edit) con inserimento diretto al suo interno delle immagini (non verrebero inserite in .ipg, ma farebbero corpo con l’articolo, che verrebbe poi richiamato con un link da questo paragrafo. Sinceramente sono contrario a segmentare a mosaico (già la presenza del colore lo fa) le comunicazioni culturali, meglio una seriazione con indice! A mio avviso si perde in serietà, professionalità ed attenzione a favore del niente. (Vedere anche i testi scolastici attuali a mosaico pieni di macchie di colore e rimandi).

———————————————–

OLYMPUS DIGITAL CAMERA

Una specie di ‘rapa’ a foglie larghe 2-3 sette  verso il picciolo, a fiori gialli nata accanto alla Cerinthe al Ponso. A destra si intravede la grande rosetta di base riprese nella foto sotto.

OLYMPUS DIGITAL CAMERA

Cristina, la nostra co-autrice e ‘classificatrice’ di riferimento, invitata ad osservare questa Crucifera, dalle foto è incerta fra una Brassica nigra (Senape nera) o Brassica rapa (Colza) se avesse le foglie abbraccianti il fusto, o ancora Rapistrum rugosum, se le piccole silique fossero meno allungate delle altre rotondeggenanti; dice che si recherà sul posto poi si vedrà.

Si è recata sul posto e  racconta che:<< La fioritura della Brassicacea in questione sta diventando superba, come la rosetta di foglie che le sta vicino. Non è facile identificare questo genere di Brassicacee, tutte molto simili, soprattutto se la seconda loro fioritura non portasse ad osservare bene anche il frutto. Però vista da vicino, mi sono quasi convinta che si possa trattare  di una Senape selvatica – Sinapis arvensis . Oltre il fiore, è proprio la rosetta basale che è tipica di questa pianta>>. Seguono le tre belle foto di Cristina di questa Senape:

SENAPE

SENAPE2

SENAPE3

Seguono anche tre foto di P. Pistoia delle foglie di Sinapsis arvensis

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Silique e foglia superiore Sinapsis arvensis

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Si allega la foto di una pagina ripresa da un interessante libro, con schizzi originali affiancanti lo scritto sintetico e rilevante, a firma di due ricercatrici dell’Istituto Botanico dell’ Università di Pisa,  A.M. Pagni e G. Corsi, stampato da Arti Grafiche Pacini Mariotti, Pisa che ringraziamo.

Sinapsis arvensis

——————————————-

SEGUONO FOTO DI CONFRONTO ATTUALE (metà ottobre) FRA:  Erigeron (Conyza) bonariensis e Symphyotricum (=Aster) squamatum, ‘compagne’ sul campo, frequenti scendendo via dei Filosofi e verso Poggio Bianco a sinistra della strada.

Da riorganizzare e/o sostituire; è meglio ingrandire!

OLYMPUS DIGITAL CAMERA

Notare frutti e involucri

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

A sinistra si intravede il S. squamatum

OLYMPUS DIGITAL CAMERA

C. bonariensis con piantina centrale e traversa a metà verso sinistra di S. squamatum

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OK

OLYMPUS DIGITAL CAMERA

La pianticella del Symphyotricum  è più snella ed elegante della Conyza

OLYMPUS DIGITAL CAMERA

————————————————–

OLYMPUS DIGITAL CAMERA

Foto dell’Astro spillo d’oro fotografato il 20 ottobre verso il P. San Domenico lungo la vigna

———————————————————–

Ecco la nuova piantina ‘puzzolente’ che sta crescendo; una Labiata (=Lamiacea) con foglie forse (se è affidabile il ricordo) simili in forma a quelle della Melissa profumata o delle mente selvatiche; è stata fotografata sul poggio del Ponso, vicino alle  rosette di Cerinthe (le foglie sono di fatto più scure e risultano un po’ schiarite dal flasch).

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Si notano i primi fiori di Labiata in basso a sinistra. Cristina Anna prima di pronunciarsi attende qualche fioritura più sostanziosa; oggi 31- Ottobre afferma: <<…suppongo  si tratti  di Ballotta nigra (Marrubio fetido) dato l’odore ed i fiori che stanno spuntando ora, anche se la vera fioritura  è sicuramente a primavera; ho notato che l’infiorescenza che si nota nella tua foto,  non si riferisce a questa pianta, bensì ad una Nepetella che si insinua sotto la pianta in questione>>. Si può osservare nell’ingrandimento o meglio attivandone il profumo ( nota dell’Estensore dello scritto).  Seguono due foto di Cristina della Ballotta:

Ballotta nigra1

Ballotta nigra2Sembra che il nome della sottospecie della Ballotta si possa individuare dalla forma del calice; visionare il calice da P. Zangheri (op. cit.) della piantina Ballotta nigra subsp foetida (4156) e della Ballotta rupestris subsp foetida (4158)

Forse i lettori saprebbero, dalle foto di Cristina, ricavare la possibile sottospecie della Ballotta in questione!

————————————————————–

Oggi alla fine di Ottobre Cristina afferma “Comunque ho notato in questi ultimi periodi, sia le piante erbacee, sia  gli arbusti e addirittura gli alberi da frutto, con le recenti situazioni meteorologiche  un po’ estremizzate, hanno avuto una seconda fioritura se non addirittura anche una fruttificazione”

Oggi 31- Ottobre ho fotografato la Composita, Asteriscus, rinata che sta rifiorendo, insieme a vecchi capolini, andando verso San Vittore a sinistra subito dopo l’ultimo edificio della Villa di Campagna Sant’Anna; un altro Asteriscus e rinato in via dei Filosofi ad una ventina di metri dopo il bivio con via del Poderino scendendo a destra. Ho fotografato anche  una nuova piantina ‘gracile’, ma invasiva in tutta la strada, da classificare:

OLYMPUS DIGITAL CAMERA

———————————————————————–

OLYMPUS DIGITAL CAMERA

Anche Cristina ha fotografata piantine come la precedente. <<Dal lato del Casale Ponsino fino ad oltre Sant’anna, si notano delle piantine di una Euphorbiacea con le foglioline seghettate color verde brillante, come pure la sua infiorescenza. Si dovrebbe chiamare Mercurialis annua (Mercorella comune)>>. Seguono le sue tre chiare foto:

Mercurialis annua1i

Mercurialis annua2

Mercurialis annua3

NDC

Caratteristiche della Mercurialis annua: si notano piccoli fiori verdicci e insignificanti, unisessuali portati da piante separate (piante dioiche). I fiori maschili ridotti a un perianzio rudimentale, che  circondano una decina di stami, sono raggruppati in glomeruli e aloro volta riuniti in spighe lasse. I fiori femminili anch’essi di scarsa rilevanza sono riuniti in gruppetti all’ascella delle foglie.

Ancora tre foto della Mercurialis a confronto 1 – con la Vetriola appena nata sull’argine poco prima del Ponsino, 2 – con la Lychnis alba (?)  davanti alla strada del Ponsino  e, poco dopo il Ponsino, 3 – con un’erbetta da classificare, vicino al cartello indicativo della Borrago, di P. Pistoia

OLYMPUS DIGITAL CAMERAi

FINE NDC

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

L’erbetta da classificare a destra potrebbe essere una Euphorbiacaea?

———————————————————————

Sempre Cristina nella sua visita del 31 ottobre afferma:<<Ancora poche decine di metri sotto Cherinte, ho notato delle piantine di Calendula, ma le foto non sono una meraviglia…>> Seguono tre foto della Calendula con capolini in fruttificazione.CALENDULA1
CALENDULA2
CALENDULA3

Vorrei fare una riflessione. Calendula è un Genere appartenete alla famiglia delle Composite… è possibile, osservando le foto risalire alla specie? Ecco, ci si muove a costruire e comunicare l’ <idea> nella mente : “Il gatto è il gatto (Felino), perché ha i baffi a filo di ferro”. Sembra una battuta, ma è molto di più: è la risposta di un alunno (un po’ bernesco) a cui il docente ha tentato di insegnare nella classe l’idea del gatto! Se interpreto bene, mi sembra che le foto abbiano evidenziato i semi nel capolino e spesso i semi sono elementi classificatori importanti anche per la specie. Bisognerebbe sempre consapevolmente anche cercare di fotografare evidenziando quegli elementi che servono a chi osserva per costruire/comunicare l’idea della piantina in studio! Una  foto specifica chiara dei semi della Calendula fotografata sopra potrebbe essere importante.

VISIONARE IL DISEGNO SCHEMATICO SEMI DI CALENDULA  da S. Pignatti (op. cit)

C. officinalis: C, D, raramente b

C. arvensis:     A, B, D

—————————————————————-

CRISTINA ANNA MORATTI termina la sua passeggiata sul nostro percorso floristico del mese di Ottobre, con queste osservazioni: <<Lungo tutto il percorso, è stato bello avere la compagnia della Bellis perennis. Questa piantina che fiorisce in ogni stagione, quando meno te lo aspetti, diventa anche prorompente, con i suoi capolini che decorano campi interi>>.

Bellis perennis1

Belli perennis2

Bellis perennis3

—————————————————–

SIAMO ARRIVATI A NOVEMBRE

Intanto non sono riuscito ad osservare  i frutti della Calendola a qualche decina di metri dopo il Ponso.  Comunque credo di non aver mai visto una Calendula!

Ho notato invece una crescita di pianticelle di Menta, anch’essa Labiata, non ancora fiorita, al bordo strada proprio davanti ai ciuffi della Ballotta nigra; qualche pianticella in fiore si trova invece a sinistra poco prima a circa un  metro  subito sotto strada. Le tre pianticelle, presenti  insieme alla Ballotta, quattro se si aggiunge la Salvia selvatica, si distinguono nell’immediato strofinandole: la Ballotta è fetida, la Calaminta ‘sa’ di Nepitella e la Menta di Menta, la Salvia (?)… nessun odore! Ho cercato di fotografare come mi riesce:

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Menta e Nepitella al Ponso

OLYMPUS DIGITAL CAMERA

Lycnis alba poggetto il Ponso

OLYMPUS DIGITAL CAMERA

Resti di Asterisco, rosette di Salvia selvatica (?), erba di campo al Ponso

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Le foto sinottiche della piantina raccolta al Ponso è una Salvia selvatica?

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Ipotesi sulla Labiata: Salvia verbenaca

OLYMPUS DIGITAL CAMERA

Si attendono quelle più chiare di Cristina

OLYMPUS DIGITAL CAMERA

Foglie della Ballotta fetida, in alto a sinistra e della Menta

OLYMPUS DIGITAL CAMERA

Foglie Ballotta, Menta e Calaminta

La vegetazione così florida sul poggetto del Ponso è probabilmente favorita dal grosso accumulo di concime subito sotto strada.

————————————————-

Una ventina di metri dopo il Ponsino verso S. Vittore, sulla destra esiste una etichetta (ancora presente; quelle per la Cerinthe e per Achillea sono sparite!) per la Borago officinalis che era seccata; ora sono riapparse delle rosette di base; speriamo che siano di Borago ricresciuta.

OLYMPUS DIGITAL CAMERA

Nuove rosette di base  di Borago (?) vicino ad una Mercorella

OLYMPUS DIGITAL CAMERA

Lycnis a destra e Mercurialis in alto a sinistra

OLYMPUS DIGITAL CAMERA

Presso il cartello Borrago, Mercurella ed erba da classificare

——————————————————————————–

All’altezza del P. San Domenico, sul basso argine del podere dove da poco hanno piantato cipressetti toscani ‘affilati’,  ho fotografato, una piantina che sta rifiorendo, con alcuni frutti verdastri a grappoli, rotondi di circa mezzo cm; all’aspetto e dal fiorellino mi è sembrata un erba Morella un po’ sciupata (i frutti della Morella, se ben ricordo, sono neri). Si richiedono approfondimenti.

OLYMPUS DIGITAL CAMERA

Oggi purtroppo (9 ott.) hanno rincalzato i cipressetti eliminanto le piantine!

—————————————————-

Oggi 4 Novembre nel tratto di via del poderino, subito sotto strada, vicino alla rete del campo sportivo, ho fatto fotografato una rosetta di Borragine rinata (?) e un’altra  a foglie larghe da individuare, forse di una Lunaria annua o Medaglioni del Papa (Cristina).

OLYMPUS DIGITAL CAMERA

Insieme alla rosetta di base  a lamine ovate si notano: a sinistra in basso Il Chenopodium album fiorito (Farinaccio), La Mercurialis (Mercurella), tracce di erba di campo e in alto una specie di ”liana’ strisciante ….ed altro

OLYMPUS DIGITAL CAMERA

Insieme alla rosetta forse di Borago officinalis (?), in basso di notano foglie di malva, a destra in alto si intravede la Mercurella e più al centro un ciuffo  un po’ sbiadito di Ballota nigra (Marrubio fedido)…..ed altro

OLYMPUS DIGITAL CAMERA

Probabile rosetta basale con foglie a cuore tendenzialmente triangolari astate forse di Lunaria annua o rediviva insieme in alto con la Mercurella circondata da una specie di ‘liana’ strisciante…ed altro. Se sviluppa vedremo.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Pianticelle di menta al Ponso

OLYMPUS DIGITAL CAMERA

Menta al bordo strada e dietro Ballotta al ponso

OLYMPUS DIGITAL CAMERA

Oggi 10 ott. ho posto un indicatore in lega di alluminio, a 4-5 metri dal secondo ingresso al P. Sant’Anna, sull’argine fra i cipressi, per indicare un mazzetto ancora in fiore (ancora per poco) di Galatelle (Aster linòrysis, Astro spilla d’oro). Intanto si è interrotta la discussione sulle piantine fotografate pochi giorni fa in via del Poderino,  sotto strada vicino alla rete dello stadio: è stato rasato il prato sopra il campo sportivo! AD MAIORA.

DA SISTEMARE E DA CONTINUARE…..NELLA PARTE SECONDA

TRE BREVI LEZIONI SUI VEGETALI: EVOLUZIONE, RIPRODUZIONE SESSUATA E SINTESI CLOROFILLIANA del dott. Piero Pistoia

Da continuare

CURRICULUM DI PIERO PISTOIA :

 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

CLICCA SU:

EVUL_premessa sull’evoluzione delle piante2

PER UNA PRIMA LETTURA SUI CONCETTI DI MEIOSI E MITOSI:  leggere il post ‘Passeggiata floristica Parte Sesta’

CENNI ALLA FOTOSINTESI CLOROFILLIANA

 (Letture e pensieri così come vengono, ripresi a spirale) a cura di Piero Pistoia 

PREMESSA

La fotosintesi clorofilliana è un meccanismo che fornisce nutrimento ed energia e quindi è condizione necessaria e spesso sufficiente per mantenere in vita la pianta e la vita sulla terra. Infatti dalla sua efficienza dipendono la garanzia della riproduzione di tutti i viventi e la continuità stessa della vita.

Le piante verdi sono organismi autotrofi, cioè riescono, a partire da composti inorganici (sali minerali del terreno, acqua e anidride carbonica), a formare composti organici che servono a mantenere e costruire il loro corpo (organicazione): da H2O+CO2 si arriva ad un composto del gruppo degli zuccheri che può condensarsi in amido e insieme a sostanze nitriche e ammoniacali darà composti azotati. Gli animali in genere sono invece eterotrofi, cioè riescono solo a organizzare il materiale costruito dagli autotrofi. Il processo di organicazione del materiale inorganico è permesso da un insieme complesso di reazioni chimiche non ancora completamente capite che si chiama fotosintesi clorofilliana. La fotosintesi perciò è il processo mediante il quale la materia organica, immersa in una atmosfera di ossigeno, si oppone alla sua completa e veloce “combustione” in CO2 + H2O. La respirazione stessa è una specie di “combustione controllata” che l’organismo è riuscito a ‘progettare’ durante la sua evoluzione e utilizzare per i suoi fini.

Ma per passare da materiali semplici (inorganici) a quelli complessi, che si configurano come “mattoni” per costruire la materia vivente, c’è bisogno di un grosso quantitativo di energia, ma anche un “meccanismo strutturato”  progettato e costruito dall’evoluzione per utilizzarla in un processo mirato a tale lavoro.  La pianta cattura tale energia da una sorgente storicamente inesauribile: il sole. La cosa sembra semplice, ma in effetti, in generale, scaldare più molecole semplici (quelle inorganiche) al sole non provoca nessuna reazione utile, come nessun oggetto si muove se ci limitiamo a trasformare acqua in vapore (vedere il 2° principio della termodinamica)! Fu la perplessità espressa da Leonardo da Vinci nel film ‘Non ci resta che piangere’ alla banale spiegazione di Troisi e Benigni (un maestro ed un bidello provenienti dal futuro) su come funzionasse la macchina a vapore; si limitavano ad indicargli un caminetto acceso ed una pentola d’acqua che bolliva (sic!). Una caricatura non banale del mondo culturale di oggi.

RACCONTO A LIVELLO ZERO

E’ necessario così prima capire che cosa si intende per ossidazione e riduzione, perché la maggior parte dei passaggi nel processo fotosintetico sono reazioni di ossido-riduzione. E’ inoltre richiesta una minima conoscenza della chimica elementare. Una molecola chimica si ossida quando cede elettroni e si riduce quando ne acquista; nelle reazioni dove entrano in gioco ossigeno e idrogeno, una combinazione con ossigeno significa ossidazione e con idrogeno riduzione (infatti, per es., se l’elemento Ca (neutro,  ossidazione 0) si combina con l’elemento ossigeno (neutro) a dare CaO, cioè Ca(2+) O(2-), si vede che si è ossidato cedendo due elettroni negativi; si dice anche che è aumentato il suo numero di ossidazione da 0 a 2, mentre O si riduce. L’ossidazione è una specie di piccola combustione e libera energia nei dintorni; la riduzione invece ne assorbe. Una molecola che si riduce acquista dentro di sé  energia chimica. Così l’energia solare può essere catturata da molecole che si riducono e trasportata da una molecola all’altra in una catena di ossido-riduzioni con salti energetici in discesa (vedere schemi dei due sistemi fotosintetici). Cerchiamo di capire. la luce spacca una molecola di acqua (fase luminosa della fotosintesi) liberando ossigeno molecolare ( da H2O – i due idrogeno del composto hanno numero di ossidazione 2+ – si formano 2H+ (cioè due protoni, atomi di idrogeno senza elettroni); mentre l’ossigeno passa da -2 a zero 1/2*O2). Durante la fase al buio della fotosintesi avrò disponibili varie molecole di ATP e NADPH ad alta energia chimica costruite durante la fase luminosa (vedere schema Z) che saranno capaci di operare le reazioni chimiche di riduzione ad alto assorbimento energetico richiesto dal  passaggio dall’inorganico all’organico. Rimane comunque il problema sul modo in cui la luce  del sole riesca a spaccare la molecola d’acqua; sembra che l’energia luminosa ecciti una molecola di clorofilla, contenuta nelle parti verdi della pianta (fase luminosa), portandola ad uno stato altamente energetico (salto di elettroni su livelli elevati) così da determinare la scissione dell’acqua, bombardata da quanti di ‘luce’ opportuni, quando ritorna al suo stato iniziale, con il conseguente passaggio dell’energia  anche ai trasportatori di elettroni liberati fino alla zona dove sarà utilizzato per i processi di organicazione del carbonio (ciclo di Calvin). Così all’interno di cellule opportune delle parti verdi della pianta (cloroplasti), che contengono vari tipi di clorofille,  avvengono complicate reazioni di ossido-riduzione in due sistemi fotosintetici, vedere dopo foto (fase luminosa), che conducono alla formazione di molecole di trasporto ricche di energia nei loro legami chimici (ATP e NADPH, vedere dopo) che, nella fase oscura (ciclo di CALVIN), serviranno a costruire le molecole carboniose (organicazione della CO2) utili a produrre poi protidi, lipidi…

Nella scissione dell’acqua si libera ossigeno nell’atmosfera. Un riassunto sulle tappe principali del processo fotosintetico è dato  nel così detto “SCHEMA H” di fig. 11 della T. sinottica e ‘SCHEMA ZETA’ che cercheremo di illustrare meglio. Vedremo meglio anche introducendo la distinzione fra  la fotosintesi delle piante di tipo C3 e di tipo C4 ed accennando ai vari  passaggi ipotetici che, per ora, non sono completamente conosciuti.

Come già accennato le piante verdi sono autotrofe, cioè riescono a produrre molecole organiche complesse (con alta energia nei loro legami) a partire da semplici composti inorganici ed acqua (poveri di energia) con in  più energia luminosa che bilanci almeno la differenza.

Per far questo utilizzano un meccanismo chimico a struttura complessa ancora non completamente compreso, la fotosintesi clorofilliana, che avviene all’interno delle cellule delle foglie verdi dette cloroplasti o plastidi entro cui è contenuta la clorofilla nelle sue diverse forme. Attraverso complicate reazioni durante la fase luminosa, in particolare di ossido-riduzione nel trasferimento energetico, che avvengono in due fotosistemi collegati, vengono prodotte molecole energetiche come l’ATP e NADPH, che serviranno poi alle altre cellule del cloroplasto per sintetizzare nel Ciclo di Calvin, le molecole carboniose, zuccheri, cioè i mattoni di partenza per produrre proteine, lipidi, ….

Il processo globale sembra essere sintetizzato con la reazione:

nCO2 + nH2O + nNhn (?) → (CH2O)n + nO2

Energia per ogni mole = Nh

N=numero di Avogadro=6*10^23 molecole/mole; h=costante di Plank=6.62*10^(-34) joule*sec; ν=frequenza del fotone

IL CLOROPLATO


fotosintesi2_plastidi0001

Questo processo avviene appunto nei cloroplasti o plastidi (simili a mitocondri, gli organuli_fabbrica dell’energia cellulare). Un cloroplasto è un organello all’interno delle cellule delle foglie o delle parti verdi, circondate da una doppia membrana che racchiude un mezzo semifluido, lo stroma. Nello stroma vi è un sistema di membrane ripiegate a formare dischetti, detti tilacoidi (vedi fig. IL CLOROPLASTO ). Un gruppo di tilacoidi sovrapposti formano delle pile in cilindretti detti grana (plurale di granum). Nello spessore della membrana dei tilacoidi ci sono tutti i pigmenti: dalle clorofille nelle loro diverse forme (verdi), ai carotenoidi (gialli rossi porpora) …. Nella parte della membrana dei tilacoidi che contiene anche i trasportatori di elettroni, gruppi di pigmenti formano, insieme ad una sequenza di molecole (catena fotosintetica), i due SISTEMI FOTOSINTETICI II e I.

RACCONTO DI PRIMO LIVELLO

Il racconto è in via di costruzione e correzione.

Questo primo livello precisa brevemente i diversi stadi della fotosintesi clorofilliana. Cerca di esplicitare alcuni passaggi delle reazioni, a partire dalla foto-scissione dell’acqua, che avvengono nei due  fotosistemi durante la fase luminosa (vedere schema Z) e precisa alcuni processi  del ciclo di CALVIN. Nelle ore diurne sulla superficie dei tilacoidi (vedere schema relativo) si attivano molti pigmenti, costituiti da clorofilla-a e l’insieme dei  pigmenti-antenna  in particolare la clorofilla b.  La clorofilla-a assorbe direttamente dalla luce del sole una data lunghezza d’onda che le compete, e dai pigmenti-antenna, dopo che sono stati attivati dall’energia solare, una lunghezza d’onda analoga. Essa si ossida liberando 2 elettroni che passano ad un accettore primario di elettroni che riducendosi acquisisce un alto livello energetico di partenza per il processo. Sotto questi due impulsi energetici,  la clorofilla-a riuscirà a ‘rompere’ anche una molecola d’acqua  in 1 atomo di ossigeno, in due ioni H+(protoni) e  due elettroni che ricaricheranno di energia al momento giusto la molecola di clorofilla-a. Si formerà anche una molecola di ossigeno che andrà a contribuire al 21% di ossigeno nell’aria. I due protoni dell’acqua completeranno infine la riduzione dell’ ADP in ATP e dell’NADP in NADPH, che si troveranno carichi di energia alla fine del processo. Nel contempo dall’accettore primario ad alta energia si distacca una catena di ossido-riduzione con il passaggio in una successione dei due elettroni ricevuti ad una serie di molecole, ognuna delle quali  si ossida (una specie di ‘sbruciacchiamento’) riducendo la successiva che a sua volta si carica di energia, ma ad un livello ancora inferiore e così via, mentre la maggior parte dell’energia liberata ad ogni passaggio va a ridurre trasversalmente una mole di ATP che immagazzina energia per gli altri scopi della pianta. (da rivedere)

UNO SGUARDO FUNZIONALE  ALL’INTERNO DI UN CLOROPLASTO

I DUE SISTEMI FOTOSINTETICI: SCHEMA ZETA

cloroplasto a2

cloroplato b2

LA FOTOLISI DELL’ACQUA, LA ‘POMPA PROTONICA’ E il ‘MECCANISMO CHEMIOSMOTICO’ DEGLI IONI IDROGENO (Ipotesi chemiosmotica di Mitchell). 

Seguire lo scritto sui disegni molto approssimati, ‘INTERNO DI UN CLOROPLATO  a e b, sopra riportati

L’energia luminosa assorbita direttamente e, di riflesso indirettamente convogliata ad imbuto, dalla clorofilla-a (diventata una specie di trappola per l’energia), tramite i pigmenti antenna, provoca salti di alcuni suoi elettroni (per es. 4 se la fotolisi interessa 2 molecole di acqua ossidate a O2) a livelli energetici superiori e subito dopo si ossida trasferendo tali elettroni eccitati  ad un accettore primario che si riduce caricandosi a sua volta di energia. Definiamo risonanza induttiva un percorso per cui una molecola eccitata può trasferire la sua energia ad un’altra molecola adiacente che resta anch’essa eccitata. Così, anche se la clorofilla-a del fotosistema II non può assorbire direttamente quelle frequenze assorbite invece dai pigmenti antenna, quest’ultimi tramite fluorescenza e risonanza induttiva riemettono quanti luce con una lunghezza d’onda conforme alla clorofilla-a (680 nanometri). Il fotosistema II è siglato appunto P680. Nel contempo 4 fotoni sprigionati dal ‘cuore’, centro di reazione del P680  (?), colpiscono 2 molecole di acqua ossidandole a O2  (che si perderanno in atmosfera) con liberazione, nell’intorno, di  4 protoni (ioni H+), man mano trascinati nel lume del tilacoide,  e 4 elettroni che andranno a ricoprire i 4 vuoti interni aperti nella clorofilla-a, che aveva perso 4 elettroni.

La corrente di elettroni lungo i trasportatori sulla membrana del tilacoide ‘pompa’  gli ioni H+, liberati dai quanti di luce nell’ossidazione dell’acqua, nello spazio interno (lume) del tilacoide. Così la densità degli H+ aumenta ed il PH diminuisce nel lume del tilacoide rendendo più acido l’ambiente rispetto allo STROMA del cloroplasto. Gli H+, spinti poi dal gradiente elettrochimico, possono uscire nello stroma fino ad incontrare, uscendo attraverso un canale proteico dove è attivo un enzima per la sintesi  di ATP e NADPH, le molecole da ridurre ADP e NADP+ di ritorno dal Ciclo di Calvin, venendo a favorire questa sintesi.


DA CONTINUARE

fotosintesi_plastidi10001IL RACCONTO DI SECONDO LIVELLO: la ‘piccola’ evoluzione fotosintetica

Durante l’evoluzione delle piante, ad un certo punto del loro albero filetico, la vita che evolve riesce ad attivare un primo processo fotosintetico a clorofilla detto C3. La pianta C3 è una fotosintetica di primo ‘tentativo’, nel senso che, forse per una leggera modifica ambientale, si troverà, almeno in alcune zone, in difficoltà. L’evoluzione del processo fotosintetico può essere considerata nell’ambito delle ‘piccole’ evoluzioni o a corto raggio, rispetto alla generale evoluzione delle piante, anche se ‘sommatorie integrate’ di eventi evolutivi a corta raggio ‘indirizzeranno’ la grande evoluzione. La pianta C3 è una fotosintetica che fornisce come primo prodotto organicato un composto a tre atomi di carbonio (triosio). In effetti questa pianta, in funzione della disponibilità  di CO2, che diminuisce aumentando la temperatura ambientale, insieme al loro rapporto CO2/O2, può incepparsi in corrispondenza del funzionamento di un enzima (il rubisco, RuBP), che invece di legarsi  alla CO2 , si lega a O2 bloccando il ciclo di Calvin al buio e quindi non ‘organica’ la CO2, entra in foto-respirazione invece di foto-sintetizzare, ‘bruciando’ molecole energetiche invece di costruirle. In effetti l’enzima Rubisco (RuBP) è poco efficiente nel discriminare fra CO2 e O2 , per cui, quando la temperatura dell’aria raggiunge per es., 27-30 °C a salire,  la CO2 in atmosfera diventa sempre più rarefatta, il rapporto CO2/O2 diminuisce, il Rubisco tende sempre più a legarsi con l’O2 e sempre meno con la CO2. E’ allora che l’enzima entra in difficoltà nell’iniziare l’ “organicazione” (cioè trasformare la molecola inorganica  CO2 in una molecola organica più complessa ricca di energia) – es., emblematico: per ottenere un esoso come il glucosio alla fine del ciclo – si rafforza la fase di foto-respirazione, tendendo ad esaurire la riserva di molecole energetiche, invece di costruirle, bloccando o indebolendo, nel migliore dei casi, il ciclo di Calvin. Se la situazione non cambiasse, la pianta soffrirebbe fino a morire. L’evoluzione, a temperatura ambientale elevata (clima caldo-arido), tenderà allora ad intervenire cercando di rafforzare la concentrazione di CO2  dove sta agendo l’enzima, onde impedire il blocco del ciclo di Calvin. Appariranno così le prime ‘piante intermedie C3-C4’ e poi le C4, inventando un meccanismo che permetta durante la fase oscura, a stomi aperti, la raccolta di molecole CO2 (attraverso l’aggancio con un composto chimico) anche nelle cellule parenchimatiche del mesofillo, trasferendole alle cellule dei cloroplasti,  per poi convogliarle alle cellule fotosintetiche, per rendere la CO2  disponibile all’enzima Rubisco (dopo una una reazione di idrolisi sul composto precedentemente accennato) e continuare il percorso C3 fino alla ‘organicazione’ della CO2. Le piante C4 sono una correzione evolutiva (ancora in trasformazione?) delle piante C3. E’ nelle piante CAM (di clima caldo e secco)  che il processo si perfeziona in un meccanismo che risparmia acqua, diviso in due tempi; nel primo, al buio a stomi aperti (bassa traspirazione), si raccoglie e si accumula la CO2 nei vacuoli delle cellule dei cloroplasti; nel secondo tempo, alla luce ma a stomi chiusi (risparmio acqua), continua il vecchio processo C3, col l’enzima Rubisco che aggancia le molecole, questa volta, di CO2 dai vacuoli, ora in concentrazione giusta e procede al buio col ciclo di Calvin. Insomma, la pianta C3, perfettamente funzionante quando la composizione atmosferica era quella di una volta, ora con il mutare delle temperature medie e delle concentrazioni di CO2 e O2 nell’aria e con la diminuzione del loro rapporto dovuti all’inquinamento, si trova fortemente disadattata per cui si è riattivato il processo evolutivo.

DA INTEGRARE E CONTINUARE associando i  grafici.

INSEGNAMENTO DELLA FISICA: una riflessione sulle possibilità educative e di insegnamento della fisica nelle intersezioni Scuola Media-Scuola Superiore, Biennio-Triennio; del dott. Piero Pistoia, docente di ruolo ordinario in fisica

CURRICULUM DI PIERO PISTOIA, al termine del post

 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Questo articolo è piaciuto al blog Briciolanellatte come comunicato il 4-5-2015 da WordPress all’Amministratore con una mail 

::::::::::::::::::::::::::::::::::::::::::::::

Premessa- Riassunto

PARTE PRIMA

FINALITA’ EDUCATIVE INDIVIDUABILI NEL BIENNIO DELLA SCUOLA SUPERIORE

PARTE SECONDA

STATO DELLO SVILUPPO COGNITIVO AL BIENNIO SUPERIORE: “ZONE DI CONFINE” ED “AREA DI SVILUPPO” DELL’APPRENDIMENTO

Bibliografia

Leggi in pdf:

INS. FISICA_BIENNIO_INTERFACCE_parti 1-2

:::::::::::::::::::::::::::::::::::::::::::::::::::::

PARTE TERZA

INSEGNAMENTO DELLA FISICA NEL QUADRO PIU’ VASTO DELLA PREPARAZIONE DI UN ITINERARIO CURRICOLARE:  RICERCA MOTIVATA, RAPPORTO STRUTTURA DISCIPLINARE  – PROBLEMI SOCIALI, INTERDISCIPLINARITA’

Bibliografia

Leggi in pdf:

insegnamento-della-fisica-31 (9)

insegnamento-della-fisica-31 (1)


:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

PARTE QUARTA

ALCUNI ASPETTI DELLA DIDATTICA SCIENTIFICA; NEI LORO RIFLESSI EPISTEMOLOGICI

Bibliografia

PARTE QUINTA

UNA PROPOSTA MODULARE PER INSEGNARE FISICA NELLA ZONA DI FRONTIERA (METODO DI APPRENDIMENTO)

Bibliografia

Leggi in pdf:

INS_FISICA_BIENNIO_INTERFACCE_parti 4-5 in pdf

 

LETTERA AL DOTT. ANGELO MARRUCCI SUL CAP. I° DEL LIBRO DI E. SEVERINO “GLI ABITATORI DEL TEMPO” del dott. Piero Pistoia

CURRICULUM DI PIERO PISTOIA:

piero-pistoia-curriculumok (#)

 

Nel lontano 1994 l’amico dott. Angelo Marrucci, allora direttore della Biblioteca di Volterra,  mi propose di scrivere il mio personale pensiero sul cap. I° del saggio di E. Severino “Gli abitatori del tempo”, Armando, 1978. Il 3-6-1994 gli consegnai il seguente scritto ‘a braccio’, che mi aveva richiesto (la mia conoscenza ufficiale ‘timbrata e certificata’ del linguaggio filosofico rimandava alla preparazione del Liceo Classico, diluita nel tempo da più di 60 anni). Oggi il dott. Angelo permane solo nel ricordo. Comunque, per quel che vale, dovunque esso si trovi in questo strano Cosmo multidimensionale, possa egli riposare per sempre in pace. Ho ritrovato questo scritto solo oggi per caso, nel mettere ordine in  un enorme raccoglitore (30 cm circa di apertura), fra i tanti negli scaffali, stipato di fogli di appunti, fotocopie, commenti, riassunti di letture,  abbozzi di programmi e programmazioni, relazioni culturali, progetti di ricerche… un guazzabuglio a più dimensioni che copre una parte del mio percorso di vita. Non so perché questa lettera mi abbia colpito emotivamente, ma rileggendola, anche per gli interrogativi che poneva, ho deciso di condividerla (in specie con me stesso) sul blog.

NB lo scritto è ancora in via di revisione e precisazione, in particolare nella individuazione delle parti dell’originale trasferite in esso.

 

ENTE ESSERE SEVERINO

 

Sono trascorsi molti anni e questo scritto è rimasto privo di un dibattito a seguire, disperso e  sgualcito  in una miriade di scartoffie senza senso che fra poco finiranno, come tutto, in discarica! e… il contenuto dell’articolo rimarrà non completamente compreso (un percorso culturale interrotto).

UN PARZIALE PERCORSO DI BASE (1) SULL’ANALISI DI UNA SERIE STORICA REALE, POCO INTUITIVA, COMMENTATO CON IL LINGUAGGIO R E COL MATHEMATICA DI WOLFRAM; SUBROUTINE PERIODOGRAMMA CON ESERCIZI; del dott. Piero Pistoia

POST-ZIBALDONE ARRUFFATO MA DENSO DI INFORMAZIONI (sulla analisi di dati sperimentali)

Vedere i tags (la via si fa con l’andare)

CURRICULUM DI PIERO PISTOIA

al termine del post

 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Problemi di inquadramento del testo

PRIMA BOZZA DI INDICE A LINKS INTERNI in via di costruzione

Links

1 – PREMESSA sullo stato dell’articolo
2 – IN ANTEPRIMA : la funzione PRDGRAM (scritto  dal dott. Piero Pistoia)  e l’esercitazione (8 esercizi) sul PERIODOGRAMMA 

RIASSUNTO

PARTE Ia

  1. Cenni operativi sui concetti di statistica implicati nell’analisi di una serie storica

  2. Correlogramma ed il Periodogramma

    1. Il Correlogramma ed il Test di Durbin-Watson

    2. Il Periodogramma del dott. Piero Pistoia

  1. Il modello di Regressione Lineare Semplice (RLS)

    1. Prima direzione di ricerca

    2. Seconda direzione di ricerca

    1. Significato dell’analisi dei residui

    2. Stime sulle grandezze della Popolazione

  1. Cenni al significato di media mobile

PARTE 2a

  1. Analisi della serie storica “ Concentrazione Arsenico”

                           Metodo delle “Medie Mobili Centrate” – Modello Additivo

  1. Scopo della ricerca

  2. Analisi preliminare e individuazione di outliers

  3. La serie corretta

  4. Gli Effetti Stagionali e la serie destagionalizzata y1t

  5. Il Ciclo-Trend smussato e la componente casuale

  6. Il modello di regressione lineare semplice e test relativi

    1. Adeguamento del modello di regressione alla popolazione

    2. Il residuo della regressione e l’affidabilità dei tests

4 – Cenni al METODO DELLA MEDIA MOBILE
5 – INIZIO AREA FRA PARENTESI

Programmi utili  in R commentati e controllati. Il Correlogramma , la Statistica di Durbin Watson, il Periodogramma (applicato come esercizio a medie trimestrali). Formule trigonometriche delle armoniche costruite dai dati di sfasamento e ampiezza riportati nei risultati.

6 – CENNO A COMANDI DI CALCOLO ED ORGANIZZAZIONE DEI DATI
Filter, matrix e ts di R. Commento sulle prime istruzioni di R (carica dati da file) e processi per automatizzare i ‘conti’
7 – ECCO QUELLO CHE FAREMO CON R: ‘LETTURE’ SUI PROCESSI
8 – INIZIO COPIA SCRIPTS DEL PROGRAMMA CENTRALE
Vari commenti anche difformi e riflessioni anche alternative
9 – PRIMA PARTE IN SINTESI
10 – SECONDA PARTE IN SINTESI
Un altro tentativo sulla caccia ai residui (media mobile 3*3)

11 – L’EPILOGO

EPILOGO

PARTE IIIa

ULTERIORI APPROFONDIMENTI

1 – APPlICHIAMO UNA REGRESSIONE LINEARE MULTIPLA

              1_1 – COME CALCOLARE LA F DI FISHER NELLE RLM ([3] 856-860)

              1_2 – COME CALCOLARE L’ERRORE STANDARD (ES) SUI COEFFICIENTI DI REGRESSIONE NELLA RLM

2 – APPLICHIAMO UNA REGRESSIONE MULTIPLA “PESATA”

3 – AZZARDIAMO UNA PREDIZIONE NEL FUTURO

4 – CONCLUSIONI E SUGGERIMENTI

BIBLIOGRAFIA

12 -APPENDICE1

Il Correlogramma ed il Test di Durbin-Watson – Lettura Correlogramma

13 -APPENDICE2

PROGRAMMI IN BASIC: calcolo Coefficienti di Autocorrelazione, il Test di Durbin-Watson, il Test della  normale di Lin-Mudholkor, analisi spettrale per il Periodogramma. Calcolo dei coefficienti in una regressione multipla (MLR), calcoli con le matrici, metodo di Cholescki. Calcola il radicando dell’errore Standard delle predizioni con la RLM, calcolo matriciale. Tavole per il Test di Normalità di Lin-Mudholkar e per il Test di Durbin-Watson.

14 -APPENDICE3

Tabelle 1-4 dei risultati sull’analisi della serie storica in studio relative all’articolo “Esempi guidati di statistica applicata” di P. Pistoia

15 -APPENDICE4

Analisi con il linguaggio R della serie storica trimestrale rivisitata e ampliata con periodogrammi risultati e grafici.

16 -APPENDICE5

ARTICOLO PREMESSA: “Il senso comune, l’insegnamento scientifico ed i saperi preposti alle scelte” di P. Pistoia

ARTICOLO COMMENTO: “Analisi di Fourier con commenti su dati reali e simulati con il Mathematica di Wolfram vers. 4.2.” di P. Pistoia

“PROGRAMMI in Mathematica con esercitazioni” di P. Pistoia

Vari esempi analizzati compreso ‘Oscillazione mensile ozono a Montecerboli (Pomarance, Pi), 2007,2011’

di Piero Pistoia

L’Esempio 5 si riferisce all’analisi della serie storica concentrazione As detrendizzata.

1 – PREMESSA

PREMESSA SULLO STATO DELL’ARTICOLO

Il presente scritto diventa, sempre più articolato ‘nell’andare’, sempre meno lineare, continuando a riempirsi di parentesi, di alternative informatiche, di pause di riflessione, di ritorni e di correzioni (si veda, per es., il caso del periodogramma come function, ormai praticamente risolto, inseribile come modulo all’interno di qualsiasi programma scritto dai lettori) ecc.. Per me è questo il ‘vero’ articolo scientifico col suo ‘travaglio raccontato (trouble)’, denso di stimoli, possibilità nascoste, interferenze casuali… e non lo scritto finale asettico e razionalmente ripulito, che banalizza il percorso. In questa ottica qualcuno ha detto che l’articolo scientifico è un inganno (Antiseri).  Possiamo forse affermare che seguire il ‘processo’  è come un auto-porsi  domande-risposte, attraverso una successione di ipotesi-falsificazioni, una sorta di MAIEUTICA  SOCRATICA che favorirebbe la costruzione del concetto? Il filosofo non insegna nulla ai discepoli, ma piuttosto a scoprire la ‘verità’, che potenzialmente hanno già dentro di loro (per processo co-evolutivo con la Natura), attraverso una successione di argomentazioni su  punti interrogativi. Allora, dal punto di vista educativo-didattico è più importante il percorso o la meta, la storia o l’evento? (meditate, gente, meditate!). Secondo me si apprende molto più e meglio se spingiamo a riflettere sugli errori  rilevati, sulle ipotesi a cammino chiuso, sulle falsificazioni insomma, anche in termini di memoria, che seguire acriticamente un racconto lineare, ‘ripianato’, anche se intrinsecamente coerente. In questa disquisizione aperta si inserisce bene anche l’altro aspetto di un Socrate-docente che, perchè ‘ignorante’,  costruisce insieme al discepolo, senza conoscenze preacquisite (risuonano qui le posizioni di Foerster e Bruner, da richiamare in questo blog).

Per sovrapporre però una ‘lettura’ su video meno discontinua e difficile, che serva come back-ground, una guida all’apprendimento più lineare,  più conforme, meno a ‘frullato di pezzi di concetti’ e quindi forse più facile e più gradevole,  trasferiamo, col titolo ‘IL PROLOGO’, la prima parte dell’articolo originale dello stesso autore (senza l’uso di R, ma di scripts in Qbasic ed Excel), di cui lo scritto in questione voleva essere una ‘lettura rivisitata’ mediata dal linguaggio R e dal Mathematica di Wolfram. Prima delle appendici trasferiamo anche la seconda parte col titolo ‘L’EPILOGO’. L’intenzione è introdurre all’inizio anche un INDICE a link per migliorare l’accesso alle diverse ‘zone mosaico’ dell’articolo. Mi scuso per ‘questo andare’ poco controllato! Se mi rimanesse più energia mentale e ‘tempo di vita’ forse potrei anche rivisitarlo. 

Comunque, un buon apprendistato sarebbe quello di leggere, prima di questo intervento, il primo post dal titolo “Un percorso verso il periodogramma” curato dallo stesso autore. Grazie.

2 – IN ANTEPRIMA

IN ANTEPRIMA

ECCO LA FUNCTION PRDGRAM DEL PERIODOGRAMMA IN R scritto dal dott. Piero Pistoia

FUNZIONE DEL PERIODOGRAMMA in pdf OK:

FUNZIONE DEL PERIODOGRAMMA1-P_Pistoia

ATTENZIONE!

Segue una proposta di esercitazione da attivare sulla consolle di R: 1) si incolla la f. PRDGRAM in R e in successione 2) si trasferiscono gli ESERCIZI dell’esercitazione, per es., uno alla volta. Si hanno i dati e grafici in uscita per ogni ESERCIZIO. Ricordarsi, una volta sulla consolle, per prima cosa, sempre azzerare  i dati, che R ha già in memoria, tramite il menù ‘VARIE’ (Rimuovi tutti gli oggetti) e poi introdurre in R, prima di incollare la PRDGRAM, le ‘library’ necessarie (tseries e graphics). 

period_reg_rand0001

Per vedere in pdf l’Esercitazione cliccare sotto:

periodogramma-_di_dati_simul-trend_random_mod2_3 (2)

0ppure……. continuare a leggere…….


PROPOSTA DI ESERCITAZIONE ANCHE PER FAVORIRE L'ACQUISIZIONE 
INTUITIVA DELLA 'LETTURA' DI UN PERIODOGRAMMA (contenuta nel 
precedente link) di Piero Pistoia

Inizialmente vogliamo simulare ad hoc una serie storica 
'tabellando' n=21 dati da tre funzioni del seno con costante 
additiva 100,con ampiezze rispettivamente 4,3,6 e 'frequenze' 
nell'ordine 2/21, 4/21,5/21 e infine  fasi -pi/2, 0, -1.745, 
con  il comando iniziale di di R: t=c(1:n), usando come base 
per i nostri esempi proprio questa espressione:
 
yt=100+4*sin(2*pi*2*t/n-pi/2)+3*sin(2*pi*4*t/n+0)+
6*sin(2*pi*5*t/n-1.745) #0.

Calcolati i 21 dati yt, attribuendo a t valori da 1 a 21 
nell'espressione precedente, tali dati rappresentano 
proprio lanostra serie storica da sottoporre al 
Periodogramma, una volta precisati i tre valori 
essenziali da passare ad esso (yt,n,m), dove m è il 
numero di armoniche da calcolare; m=n/2-1 se n è 
pari; m=(n+1)/2 se m è dispari. 
Tramite il nostro programma in R calcolammo allora 
i valori di ampiezze e fasi per le prime 10 armoniche 
riscoprendo nei dati le oscillazioni che c'erano.
Per esercizio continuiamo a simulare serie storiche 
modificandol'espressione di base, modificandola anche 
aggiungendo, a scelta, un trend lineare (k*t) e/o 
valori random onde controllare se il Periodogramma 
riesce a"sentire", oltre alle oscillazioni armoniche, 
anche il trend e la componente casuale.
Con l'istruzione '#' elimineremo secondo la necessità 
le linee di programma non utilizzate per lo scopo 
prefissato.
	 
Proviamo, prima, ad applicare il programma su 21 dati 
simulati dalle espressioni di una retta inclinata e da 
una serie random estratta da una distribuzione gaussiana. 
Sceglieremo poi una combinazione di seni interessanti 
più adatta a proseguire l'esercitazione.  
period_reg_rand0002


PERCORSI DA INVESTIGARE
 
par(mfrow=c(1,1))

 #n=21
 #n=240
			
 #t=c(1:n)
 
 # yt=0.5*t # 1
 #si tratta di un ramo di iperbole(?)discendente
 
 #yt=c();yt[1:t]=0
 
 #yt <- rnorm(t,0,1) # 2
 #yt=-4+ 0.5*t + rnorm(t,0,1) # 3
 
#yt=100+4*sin(2*pi*2*t/256-pi/2)+3*sin(4*t/256*2*pi+0)+
6*sin(5*t/256*2*pi-1.745) # 4 
#analisi yt; tenendo come base questa espressione con 
armoniche basse, ro è sulla rampa alta #della 'iperbole' 
e si obnubila il trend.
 
 #yt=100+4*sin(2*pi*2*t/n-pi/2)+3*sin(2*pi*4*t/n+0)+
6*sin(2*pi*5*t/n-1.745) + 0.1*t # 5 
 
#analisi yt_reg
 
 #yt=100+2*sin(2*pi*2*t/n-pi/2)+sin(2*pi*4*t/n+0)+
3*sin(2*pi*5*t/n-1.745) + rnorm(t,0,1)*2 # 6 
 #analisi yt_rnorm: diminuiamo le ampiezze e aumentiamo 
i random
 
 #yt=100+4*sin(2*pi*2*t/n-pi/2)+3*sin(2*pi*4*t/n+0)+
6*sin(2*pi*5*t/n-1.745) + 0.5*t)+(rnorm(t,0,1)-1/2))  # 7 
 #analisi yt_reg_rnorm

 yt <- 6*sin(2*pi*5*t/n)+2*sin(2*pi*30*t/n)+ 
3*sin(2*pi*40*t/n)+0.1*t + rnorm(n,0,1)*2 # 8 

 #questa espressione anche con 'frequenze' alte (30,40) è la 
 #più indicata a dimostrare che il Periodogramma 'scopre' anche trends 
 #e randoms oltre alle oscillazioni sinusoidali.
 
Ora possiamo prevedere che cosa accade se togliamo una 
o due di queste tre,basta far girare il programma nei 
diversi casi. 
 In questo contesto nel prosieguo useremo invece, per 
esercizi, le tecniche di scomposizione di una serie 
storica: proviamo a 'destagionalizzarla' in successione 
con due o tre medie mobili opportune (o magari col 
comando filter di R) per controllare che cosa rimane 
(che cosa accade ai random?). Potevamo anche 
'detrendizzarla prima con una regressione lineare, 
ovvero eliminare i random con una media mobile 3*3 ecc..
period_reg_rand0003

TRACCIA DEI PERCORSI

ESERCIZIO N° 0

n0=256 # può essere cambiato
t=c(1:n0)
yt0=100+4*sin(2*pi*2*t/n0-pi/2)+3*sin(2*pi*4*t/n0+0)+
6*sin(2*pi*5*t/n0-1.745)
yt0 # la serie storica
ts.plot(yt0)
if(n0/2==n0%%2) m0=n0/2-1 else m0=(n0-1)/2
yt0_period=PRDGRAM(yt0,n0,m0)
yt0_period # data in uscita con ampiezza e fase, per il 
controllo
yt0_period$ro # vettore delle ampiezze
ts.plot(yt0_period$ro)

Esercizio N° 1

n01=21
t=c(1:n01)
yt1=0.5*t
yt1 # serie storica
ts.plot(yt1)
if(n01/2==n01%%2) m01=n01/2-1 else m01=(n01-1)/2
yt1_period=PRDGRAM(yt1,n01,m01)
yt1_period #data in uscita comprese ampiezze e fasi
yt1_period$ro #vettore delle ampiezze
ts.plot(yt1_period$ro)

Esercizio N° 2

n2=21 # può essere cambiato
t=c(1:n2)
yt2<- rnorm(t,0,1)
plot(yt2)
yt2 # serie storica
if(n2/2==n2%%2) m2=n2/2-1 else m2=(n2-1)/2
yt2_period=PRDGRAM(yt2,n2,m2)
yt2_period # data in uscita
yt2_period$ro # vettore delle ampiezze
plot(yt2_period$ro)

ESERCIZIO N° 4

n4=256 # può essere cambiato
t=c(1:n4)

yt4=100+4*sin(2*pi*2*t/256-pi/2)+3*sin(2*pi*4*t/256+0)+

6*sin(2*pi*5*t/256-1.745)
yt4 
ts.plot(yt4)
if(n4/2==n4%%2) m4=n4/2-1 else m4=(n4-1)/2
yt4_period=PRDGRAM(yt4,n4,m4)
yt4_period # data in uscita
yt4_period$ro # vettore delle ampiezze
ts.plot(yt4_reg$ro)




ESERCIZIO N° 5

n5=256 # può essere cambiato
t=c(1:n5)

yt5=100+4*sin(2*pi*2*t/256-pi/2)+3*sin(2*pi*2*pi*4*t/256+0)+

6*sin(2*pi*5*t/256-1.745)-0.1*t

plot(yt5,type=”l”)
if(n5/2==n5%%2) m5=n5/2-1 else m5=(n5-1)/2
yt5_reg=PRDGRAM(yt5,n5,m5)
yt5_reg # data in uscita
yt5_reg$ro # vettore delle ampiezze
ts.plot(yt5_reg$ro)
                               ____________________________________________

perio_reg_rand0001ESERCIZIO N° 8
par(mfrow=c(1,2))
n8=100 # può essere cambiato
t=c(1:n8)

yt8=6*sin(5*pi*2*t/n8-pi/2)+2*sin(2*pi*30*t/n8+0)+3*sin(2*pi*40*t/n8-1.745)+rnorm(n8,0,1)*2

ts.plot(yt8)
if(n8/2==n8%%2) m8=n8/2-1 else m8=(n8-1)/2
yt8_reg=PRDGRAM(yt8,n8,m8)
yt8_reg # data in uscita
yt8_reg$ro # vettore delle ampiezze
ts.plot(yt8_reg$ro)

GRAFICO YT8 E PERIODOGRAMMA (Yt8_reg$ro) SENZA IL TREND
period_confronti0001
GRAFICO DI Yt8_reg_rnorm n=240
period_confronti0002

 

GRAFICO Yt8  ANCHE CON IL TREND (serie originale)
 
 period_confronti0004
#RIFLESSIONI
#Se aggiungo il trend 0.1*t a yt8 ottengo il grafico 
precedente. Confrontando il grafico che segue#e quello 
precedente sarebbe interessante approfondire 
intuitivamente perché col trend le ampiezze
#vengono disturbate tanto più quanto più lentamente 
scende a zero il ramo di 'iperbole'.Sembra #quasi così, 
induttivamente, si possa affermare la regola empirica 
(ipotesi) che armoniche con #frequenze più alte  vengano 
disturbate meno di quelle più basse, che si posizionano 
sul ramo a #pendenza più elevata e con i suoi punti 
più distanti dall'ascissa. Se sommiamo la distanza della 
#base dei picchi dall'asse orizzontale alla cima dei 
picchi l'ampiezza tenderebbe al valore della 
#formula? Se togliamo anche i random da yt8 i tre picchi 
sarebbero poggiati sull'asse orizzontale?#La numerosità 
di yt8 influisce o no sulla velocità con cui si muove 
verso l'asse x la curva del  trend? Cercare di rispondere 
osservando i grafici precedenti.
 period_reg_rand0004

FINE ANTEPRIMA

<A NAME=”punto3″>IL PROLOGO

IL PROLOGO

3 – PROLOGO

COME INTRODUZIONE RIPORTIAMO LA PRIMA PARTE DELLA RICERCA ORIGINALE (SENZA L’USO DI R);  LA SECONDA PARTE VIENE RIPORTATA PRIMA DELLE APPENDICI. 

piero_stat0001

pier_stat0001

pier_statw30001

SE VUOI APPROFONDIRE LE PROBLEMATICHE RELATIVE A FOURIER VEDI L’APPENDIX5

pier_stat0002

pier_stat50001

pier_stat6y0001

pier_stat0005

pier_stat0006

pier_stat90001
pier_stat0007

pier_stat0008
pier_stat120001


pier_statz130001

LA COSTRUZIONE SI FA CON L’ANDARE!

 LA FUNCTION DEL PERIODOGRAMMA ora può essere trasferita come modulo in qualsiasi  altro programma scritto da chiunque!  Abbiamo  cercato di correggere  tutti gli scripts dove figurava questa funzione all’interno di questo post.  Vedere di seguito (area definita “fra parentesi”) il funzionamento di  un listato con svariati richiami a questa funzione con proposte di ‘gioco’ con le armoniche su una serie storica reale (serie storica trimestrale) …. Il   listato del periodogramma è lungo e articolato. Nell’analisi di una serie di dati storici con piu’ serie derivate capita spesso di far uso di questo listato per guardare all’interno delle serie. E’ pertanto utile riuscire a scrivere una sola volta questo listato per poi richiamarlo quando serve. Da riorganizzare anche testo e paragrafi. Problemi sorgono anche perché R memorizza all’uscita tutti gli oggetti su cui ha lavorato che tacitamente, pur nascosti, sono ancora disponibili. Questi valori possono interagire sui programmi in via di sviluppo, creando situazioni le più disparate. In generale conviene dal menù ‘varie’ eliminare questi valori prima di far girare o costruire programmi! Si cercherà con calma  di attivare i controlli  anche sugli altri post, dove figura la function PRDGRAM.

ATTENZIONE: I SEGMENTI DELL’ARTICOLO IN GRIGIO CHIARO HANNO UNA BARRA ORIZZONTALE IN FONDO PER MUOVERE LO SCRITTO A DESTRA E SINISTRA, SE LO SCRITTO ESCE DALLO SCHERMO

stat_reg_mlr_blog0001

 FINE PROLOGO

               UN PARZIALE PERCORSO DI BASE SULL’ANALISI STATISTICA DI UNA SERIE STORICA REALE POCO INTUITIVA COMMENTATO CON IL LINGUAGGIO R

“Letture” su concetti statistici e su alcuni aspetti della programmazione

Dott. Piero Pistoia

PREMESSA

NB – I GRAFICI OTTENUTI CON IL SUPPORTO DEL PROGRAMMA CORR IN QBASIC (ALLEGATO) E DI EXCEL,  SE RIUSCIAMO A RIDISEGNARLI TUTTI, FACENDO GIRARE GLI SCRIPTS DEL LINGUAGGIO R CHE SEGUONO, QUESTO E’ UN EFFICACE CONTROLLO INTERNO ALLO SCRITTO.

Il file.dati che prenderemo come campione da analizzare riguarda le concentrazioni mensili di arsenico (As) misurate in mg/l nelle acque della Carlina (sorgenti Onore), prov. Siena, nell’intervallo di tempo 1989- 1993 (5 anni, 60 mesi con inizio da gennaio). Dopo interpolazione per i dati mancanti,   un’analisi preliminare (Modello Additivo secondo il Metodo delle Medie Mobili Centrate) porta ad individuare tre residui standardizzati elevati (> 2 in valore assoluto e quindi considerati outliers da eliminare e sostituire con nuova interpolazione,ottenendo così una serie storica corretta, stocastica e discreta; stocastica, nel senso che il futuro è solo parzialmente determinato dai valori del passato e discreta, nel senso che le misure sono fatte in tempi specifici (ogni mese) a uguali intervalli.

Su questa serie (yt=as1) di 60 dati – inserita nel file che si chiama As-Carlina1.csv – e che comunque   verrà esplicitata all’inizio dell’analisi – procediamo “a fare i conti” e a gestirla con R. Questa parte iniziale preliminare verrà trattata successivamente.

Intanto alleghiamo di seguito Il grafico della serie corretta e interpolata (Graf. N.1).

priodogramma0001

L’analisi di base di una serie storica procede alla ricerca delle uniformità al suo interno, come TREND, vari tipi di stagionalità periodica (giornaliera, settimanale, mensile, trimestrale ecc.) correlata al carattere dei dati che abbiamo (orari, giornalieri, settimanali,ecc.), cicli con eventuale periodo superiore che esce dal range dei dati (in generale periodo e ampiezza variabili), la componente random, che riassume lo ‘white noise’ ed altro (impulsi erratici). Alleghiamo come informazioni preliminari anche il relativo grafico dell’autocorrelogramma e del periodogramma (GRAF. N. 2, a e b). Si rimanda al loro significato e processo alla Appendice 1 di questo articolo e al Post scritto a nome di P.Pistoia ed altri, facilmente accessibile da questo sito, per es., battendo periodogramma nella finestra ‘Cerca’. Anticipiamo che dal correlogramma (GRAF. N.2 a)  si osservano una stretta convessità intorno al valore 12-13 che supera la fascia dell’errore, una ondulazione dei picchi (forse una oscillazione), un permanere di picchi nella zona positiva (TREND) ed altro e quindi  si evince che i dati della serie al 95% di fiducia, non sono random e dal periodogramma  si nota un picco forse rilevante corrispondente al valore 5  (5 oscillazioni nel range dei dati, cioè 5 oscill. in 5 anni, una oscillazione all’anno, quindi periodo=12 mesi). In dati mensili, una oscillazione periodica di periodo 12 è allora un’ipotesi plausibile.

Scegliamo di procedere, come tentativo, per prima cosa ad eliminare dalla serie storica corretta ( yt o as1) l’oscillazione stagionale prevista dai grafici precedenti. Useremo vari metodi per farlo e confronteremo poi i risultati.

priodogramma0002

4 – Cenni al METODO DELLA MEDIA MOBILE

SINTESI SUL METODO DELLA MEDIA MOBILE

Il metodo della media mobile consiste nel sostituire ai valori osservati, valori artificiali corretti, ottenuti effettuando la media di ciascun valore con quelli contigui (per il calcolo vedere, per es.,  [3] pag. 997), ottenendo una nuova serie storica.

Se da una serie storica vogliamo eliminare una oscillazione di un dato periodo, bisogna scegliere, per il calcolo della media, una lunghezza del periodo mobile uguale il più possibile alla lunghezza del periodo dell’oscillazione prevista.

E’ da tener presente che sembra che talora tale metodo abbia il difetto di inserire un ciclo fittizio in una serie storica anche casuale. Abbiamo controllato nel caso della serie trimestrale enucleata da quella in studio (vedere dopo).

Useremo la Media Mobile Centrata di ordine 12 (come suggerito dai grafici preliminari) che di norma elimina l’oscillazione di uguale periodo insieme alle componenti casuali dalla serie originale, trasformando la serie mensile originale (yt o as1,  che inizia con gennaio, APPENDIX3, TABELLA N.1, col.5  ) in una serie storica di dodici termini più corta (la serie Mbt, APPENDIX3, TABELLA N.1, col.6,  che perde i valori dei primi sei mesi e degli ultimi sei, e inizia da luglio). Da porre attenzione che nel processo di scorciamento il primo termine della serie Mbt si riferisce al mese di luglio del primo anno e così via. L’Mbt sottratta da quella originale (as1) ne fornisce una della stessa lunghezza della precedente (48 temini), l’STRD (componente stagionale + random, APPENDIX3, TABELLA N.1, col.7 ), sulla quale operiamo poi per ottenere il Fattore Stagionale costituito da dodici termini, uno per ogni mese (oscillazione in un anno). Per ottenere il Fattore Stagionale corrispondente ad un mese, si considerano tutti i valori della serie STRD (più corta di 12 termini) corrispondenti a quel mese e se ne fa la media. Quando faremo girare il programma scritto con R e vedremo i 48 valori della serie STRD, potremo controllare che, per es., i 4 valori del mese di gennaio (il settimo, il diciannovesimo, il trentunesimo, il quarantaduesimo) sono -0.0030, -0.0046, 0.0033, 0.0126 e facendo la media otterremo il 7° elemento del Fattore Stagionale, 0.0022, cioè il primo elemento di ESAs (APPENDIX3, TABELLA N.2, col.1), EFFETTO STAGIONALE,  la cui oscillazione è visibile nel GRAF. N.3 a.

Così per il mese di gennaio si fa la media dei 4 valori di gennaio contenuti nella serie STRD, ottenendo il primo valore dell’Effetto e così via. Con questi processi di media verranno eliminate anche le componenti casuali, se ci sono rimaste, dalla serie STRD che diviene così ST (stagionalità). Ripetendo 5 volte la ST copriamo i 5 anni, ottenendo l’Effetto Stagionale. E’ necessario però prima riorganizzare i 12 termini del Fattore Stagionale, spostando i primi sei termini, alla fine degli ultimi sei in maniera da avere i 12 valori allineati da gennaio a dicembre. Per il controllo di questa oscillazione applichiamoci, per es., il programma CORR scritto in Qbasic dall’autore (nota 2) o in linguaggio R (vedere sotto PARENTESI) e focalizziamo l’attenzione sul periodogramma dell’ultima serie ottenuta per osservare la frequenza di questa oscillazione (GRAF. N.3 a,b dell’Effetto Stagionale, ottenuto invece per mezzo di Excel): chiaramente significativa appare la frequenza 5.  Troveremo lo stesso periodogramma anche con R.  Con R useremo la funzione acf (file, main=”Titolo”), per ritrovare i correlogrammi costruiti con CORR ed excel; per il periodogramma si rimanda anche alla relativa routine qui riproposta, rivisitata e funzionante.

————————————————-

5 – INIZIO AREA FRA PARENTESI

5-AREA FRA PARENTESI

APERTA PARENTESI

Alcuni programmi in R utili nello studio delle serie storiche

Da notare (fra parentesi) il programmino riportato qui sotto, scritto in linguaggio R dal sottoscritto, con i suoi risultati, che calcola egregiamente (almeno sembra) i coefficienti di auto-correlazione di una serie storica di prova:

y=c((1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)). Comunque, nell’andare, lo vedremo in azione per i tanti confronti e prove! Si aggiungono di seguito anche scripts in R per il calcolo di DW (test di Durbin Watson), metodo più efficace nell’analisi dei correlogrammi, sempre del sottoscritto.

ATTENZIONE!  GLI SCRIPTS DEI PERIODOGRAMMI COME SUBROUTINES (functions) SONO IN VIA DI CORREZIONE

RIPORTIAMO SUBITO ANCHE IL PROGRAMMA PIU’ COMPLESSO PER COSTRUIRE IL PERIODOGRAMMA DI UNA SERIE STORICA con i  relativi risultati per il controllo . Un controllo quantitativo più puntuale è stato condotto col MATHEMATICA 4.2 di Wolfram nella APPENDIX4 (Piero Pistoia)

Queste routines  messe sotto forma di Functions serviranno per costruire correlogrammi, tests di DW e periodogrammi ognivolta che servono.

library(tseries)

# PROGRAMMINO ‘CORRELOGRAMMA’

# Un piccolo strumento per allenare anche l’intuito

#dott. Piero Pistoia

result=c() # result=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
result1=c() # result1=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
#y=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)
y=c(1:20) 
# Il lettore può a piacere aggiungere altre funzioni (anche numeri casuali), tentare di indovinare # con ipotesi e poi controllare, per acquisire intuizione sul Correlogramma e sui suoi limiti.

#Controllare se le definizioni dei vettori con elementi NA sono necessari! Sembra di no!
#y=c(1,2,3,4,5)
 N=length(y)
 m=10
 yM=mean(y)

 for(h in 1:m){
for (t in 1:N-h){
 result[t]=(y[t]-yM)*(y[t+h]-yM)
 }
result1[h]=sum(result)
} # OK
result1
result2=c()
#result2=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
#for(h in 1:m){

 for(t in 1:N){
 result2[t]=(y[t]-yM)^2
 }
result3=sum(result2)

# Calcolo il coeff. di correl. di lag 1

rh=result1/result3

t=seq(1:10)

Prh=plot(t,rh)

RISULTATI DELLA PROVA (nessun errore rilevato dalla consolle di R nella prima prova!)

> load(“C:\\Users\\Asus\\Documents\\.RData”)
> library(tseries)

‘tseries’ version: 0.10-32

‘tseries’ is a package for time series analysis and computational
finance.

See ‘library(help=”tseries”)’ for details.

> result=c(); result=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
> result1=c(); result1=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
> y=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)
>
> #y=c(1,2,3,4,5)
> N=length(y)
> m=10
> yM=mean(y)
>
> for(h in 1:m){
+ for (t in 1:N-h){
+ result[t]=(y[t]-yM)*(y[t+h]-yM)
+ }
+ result1[h]=sum(result)
+ } # OK
Ci sono 45 avvisi (usare warnings() per leggerli)
> result1
[1] 565.25 385.75 233.75 107.25 4.25 -77.25 -139.25 -183.75 -212.75
[10] -228.25
>
> result2=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
> #for(h in 1:m){
>
> for(t in 1:N){
+ result2[t]=(y[t]-yM)^2
+ }
> result3=sum(result2)
>
> # Calcolo il coeff. di correl. di lag 1
>
> rh=result1/result3
>
> t=seq(1:10)
>
> Prh=plot(t,rh)

Risultato da confrontare con acf(y)

SE SCRIVIAMO coeffcorr=acf(y), R DARA’ ANCHE IL VETTORE DATI IN coeffcorr

La formula usata è quella senza la moltiplicazione per N/(N-1)

LA STATISTICA DI DURBIN WATSON

library(tseries) 
y=c(1,2,3,4,5,6,7,8,9,10) 
n=length(y) 
#result=c(NA,NA,NA,NA,NA,NA,NA,NA,NA)
 result=c()
 result1=c()
for(t in 2:n){
 result[t]=(y[t]-y[t-1])^2
}
result=result[2:n]
a=sum(result)

for(t in 1:n)
result1[t]=y[t]
b=sum(y)
dw=a/b
dw

#Nella tabella, k'=n° regressori non contando la costante, a=n° osservazioni (y) e dw, sono le tre informazioni per fare il 
test con la tabella.
#Per k'=1 e a=20  l'intervallo dl-du=1.201-1.411, per cui 0.2 < dl:  presenza di correlazione,
#si respinge l'ipotesi nulla (ipot. nulla = i dati non sono 
correlati!), come era intuitivamente già nelle cose.
Da notare che normalmente il test si applica ai residui per 
testare la loro indipendenza.
RISULTATI DELLA PROVA (nessun errore sulla consolle di R) 
> library(tseries) 
> y=c(1,2,3,4,5,6,7,8,9,10) 
> n=length(y) > 
#result=c(NA,NA,NA,NA,NA,NA,NA,NA,NA) 
> result=c() > result1=c() 
> for(t in 2:n){ + result[t]=(y[t]-y[t-1])^2 + } 
> result=result[2:n] 
> a=sum(result) 
> > for(t in 1:n) 
+ result1[t]=y[t] 
> b=sum(y) 
> dw=a/b 
> dw [1]
 0.1636364
 >

#TENTIAMO SCRIPTS del PERIODOGRAMMA IN FORMA DI FUNCTION del dott. Piero Pistoia

# PROVE_TEST SUL PERIODOGRAMMA E CONTROLLO COL MATHEMATICA 4.2 
# Oscillazioni su medietrim e costruzione delle formule 
trigonometriche
# Eliminazione delle varie armoniche

par(ask=T)
par(mfrow=c(1,3))
#medietrim sono i 20 valori trimestrali relativi ai 60 dati mensili delle concentrazioni arsenico 
#della Carlina per 5 anni, in studio.
#Vedere il Post a nome di P.Pistoia  "Un percorso verso il periodogramma" 
#in questo blog o rivisitato ed esteso in APPENDIX4.

yt=c(0.04233333,0.06100000,0.04500000,0.0556666,0.05400000,
0.06500000,0.07066667,0.04633333,0.05833333,0.06533333,
0.08516667,0.06866667,0.07650000,0.0761666,0.07300000,
0.06700000,0.07966667,0.07333333,
0.07866667,0.06266667)

#ALTRA PROVA IN COSTRUZIONE
#yt= qui si introduce il vettore detrend_trim, cioè i 20 valori di yt detrendizzato, 
#su cui faremo agire la function del periodogramma. Vedere  
APPENDIX4
# detrend_trim=c(-0.0094714286, 0.0077825815, -0.0096300752, 
#-0.0003760652, -0.0034553885, 
# 0.0061319549, 0.0103859649, -0.0153600251, -0.0047726817, 
0.0008146617, 
# 0.0192353383, 0.0013226817, 0.0077433584, 0.0059973684, 
0.0014180451, 
#-0.0059946115, 0.0052593985, -0.0024865915, 0.0014340852, 
-0.0159785714)
 
n=length(yt)
yt=as.vector(yt)
nx=n
yx=yt 
medietrim=yt




#m =(n-1)/2 # perché n dispari
#m =(n/2-1) # perché n pari

if (nx/2%%2==2) mx=nx/2-1 else mx=(nx-1)/2 #controllo 
automatico di n (pari o dispari?)
#Controllare se ho invertito le due opzioni!

nx
mx
t=c(1:length(medietrim))
PRDGRAM<- function(y1,n1,m1) {

# VALORI DEL PARAMETRO ak
a0=c(); k=0; a0=0;
for(t in 1:n1){a0=a0+y1[t]*cos(2*pi*t*k/n1)}
a0

a0=a0*2/n1;a0=a0/2

a0

a=c();a[1:m1]=0;
for(k in 1:m1) {
for(t in 1:n1){
a[k]=a[k]+y1[t]*cos(2*pi*t*k/n1)}}
a=2*a/n1

# vALORI DEL PARAMETRO bk

b=c();b[1:m1]=0;b0=0;k=0
for(k in 1:m1) {
for(t in 1:n1){
b[k]=b[k]+y1[t]*sin(2*pi*t*k/n1)}}

a <- as.vector(a)

for(i in 1:m1){
if (abs(a[i]) < 1e-10) a[i]=0 else a[i]=a[i]}
a

for(i in 1:m1){
if (abs(b[i]) < 1e-10) b[i]=0 else b[i]=b[i]}
b=2*b/n1
b
# AMPIEZZE
#ro[1:m1]=0
ro <- sqrt(a^2 +b^2)

for(i in 1:m1){
if (abs(ro[i]) < 1e-10) ro[i]=0 else ro[i]=ro[i]}

# CALCOLO DELLA FASE DI OGNI ARMONICA
# RIPORTANDO IL VALORE AL QUADRANTE GIUSTO
f2=c()
f2[1:m1]=0
for(i in 1:m1){
f2[i] <- abs(a[i]/b[i])
f2[i] <- atan(f2[i])*180/pi}
f2 =as.vector(f2)
f2
#f2[1:m1]=0 un f2[1:m1] di troppo!
phi <- c()
for(i in 1:m1){
# f2 <- abs(a[i]/b[i]);
# f2 <- atan(f2)*180/pi;
if(b[i]>0 & a[i]>0) phi[i] = f2[i];
if(b[i]<0 & a[i]>0) phi[i] = 180-f2[i];
if(b[i]<0 & a[i]<0) phi[i] = 180+f2[i];
if(b[i]>0 & a[i]<0) phi[i] = 360-f2[i];
if(b[i]==0 & a[i]==0) phi[i] = 0;
if((b[i]<0 & b[i]>0) | a[i]==0) phi[i]=0; 
if(b[i]==0 & a[i]>0) phi[i]=90;
if(b[i]==0 & a[i]<0) phi[i]=360-90
}

# PHI FASE ARMONICHE

phi=as.vector(phi)
phi
param_a <-a
param_b <-b
ampiezza <- ro
fase <- phi

a;b;ro;phi
# Qui, al termine della function si pone il valore di un'unica 
# variabile che esce o, se escono più variabili, si usa  
# un data.frame: data=data.frame(x1,x2,...).
# Ogni chiamata alla function permette di includere l'unica 
# variabile o i data nel nome della chiamata:
# es. periodxx=nome.function(x1,x2,...)

data <-data.frame(a,b,ro, phi) 
data
# questa matrice esce dalla function e viene 'raccolta' nella variabile periodxx

}

#FINE SUBROUTINE ANALISI FOURIER

period=PRDGRAM(medietrim,nx,mx)
period 
plot(period$ro,type="l",main="PERIODG.medietrim",
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")
# 1° grafico in A1
# medietrim (vedere ro del  period. di medietrim) presenta 
# le armoniche rilev. n.3 e n.5 (GRAF.A1)

# for(i in 1:10000000) i=i
#data <-data.frame(param_a,param_b,ampiezza, fase)
#data
# Con il numero delle armoniche considerate rilevanti, 
le relative ampiezze e fasi possiamo
# costruire le loro espressioni trigonometriche.

w1=c(1:length(medietrim))
y_osc=0.0058*sin(2*pi*5*t/20+3.9) # questa oscillazione 
dovrebbe avere  
# un'armonica 5 (GRAF.A3)
so=medietrim-y_osc # so nel grafico dell'ampiezza (GRAF.B2). 
# Questa sottrazione eliminerà l'armonica 5
#  da ro di medietrim (GRAF.B2)

so
#PER UN'ALTRA PROVA

# Se consideriamo l'altra espressione y_osc1=0.0066*sin(2*pi*3*t/20+2.92), che ha un picco 
#all'armonica 3, invece di y_osc, e la sottraiamo da medietrim che ha pure un picco  
#all'armonica 3 (GRAF.A1), come diverrà il grafico? (vedere 
GRAF.B3)

#Se detrendiziamo medietrim (detrend_trim) e applichiamo il 
period. 
#potremo controllare le sue armoniche rilevanti e esprimere in forma analitica 
#(in formula trigonometrica) la loro rilevanza (y_oscxx). 
APPENDIX4 

#detrend_trim=c(-0.0094714286, 0.0077825815, -0.0096300752, 
#-0.0003760652, -0.0034553885, 
#0.0061319549, 0.0103859649, -0.0153600251, -0.0047726817, 
0.0008146617, 
#0.0192353383, 0.0013226817, 0.0077433584, 0.0059973684 
0.0014180451, 
#-0.0059946115, 0.0052593985, -0.0024865915, 0.0014340852, 
-0.0159785714) #ripreso dall'APPENDIX4
 
FINE ALTRA PROVA
ny=length(y_osc) 
n=length(so) 

if (n/2== n%%2) m=n/2-1 else m=(n-1)/2 
period1=PRDGRAM(so,n,m) 
period1 
period1$ro 
#plot(period1$ro,type="l",main="PERIODG.senza osc.5", 
#xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")
y_osc1=0.0066*sin(2*pi*3*t/20+2.92)# armonica 3; FIG.A2 
nz=length(y_osc1)
if (nz/2== nz%%2) mz=nz/2-1 else mz=(nz-1)/2
period6=c() 
period6=PRDGRAM(y_osc1,nz,mz) 
period6 
plot(period6$ro,type="l",main="PERIODG.y_osc1",
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")# 2° grafico in A2
if (ny/2== ny%%2) my=ny/2-1 else my=(ny-1)/2 
period2=PRDGRAM(y_osc,ny,my)  
period2  
period2$ro  
plot(period2$ro,type="l",main="PERIODG.y_osc", 
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza") # 3° grafico in A3
 
period3=c() 
period3=period 
plot(period3$ro,type="l",main="PERIOD.medietrim", 
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")
# 4° grafico in B1 
# medietrim (vedere ro del period. di medietrim)

 

so1=medietrim-y_osc1 
#period4=c() 
#period4=period1 
#plot(period4$ro,type="l",main="PERIODG.senza osc.3", 
#xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")

nz=length(y_osc1) 
if (nz/2%%2==2) mz=nz/2-1 else mz=(nz-1)/2 #controllo automatico di n (pari o dispari?) 
period5=c() 
period5=PRDGRAM(so1,nz,mz) 
period5 
plot(period5$ro,type="l",main="PERIODG.senza osc.3",  
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza") # 5° grafico in B3 
#par=(mfrow=c(1,1)) 
#period6=c() 
period6=PRDGRAM(y_osc1,nz,mz) 
#period6 
#plot(period6$ro,type="l",main="PERIODG.y_osc1",  
#xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")# 
plot(period1$ro,type="l",main="PERIODG.senza osc.5", 
xlab="Armoniche = N° oscillazioni in n dati", ylab="ampiezza")
#6° grafico in B2
#RISULTATI OK
cliccare qui sotto per vedere i risultati degli scripts in pdf che verranno costruiti facendo girare il programma precedente.
period_prove_test (1)
                                                                   

Si aggiungono qui i relativi tre grafici FIG.A, FIG.B, FIG.C costruiti dal programma precedente, e la successiva  FIG.D, che illustra, alla rinfusa, l’appunto relativo alla formulazione delle due armoniche costruite su ampiezze e fasi dei risultati.

FIG.A0001
FIG.A0002

FIG.A0004

FIG.D

FIG.D0001

DA QUI IN POI QUALCOSA ANCORA DA CONTROLLARE

PER VEDERE LA PRIMA VERSIONE DEL PRECEDENTE PROGRAMMA IN PDF 
CLICCARE SOTTO:

function_period_ok_3_richiami_result-p_pistoia-1 (1) 

LA NUOVA VERSIONE DEL PRECEDENTE PROGRAMMA CON IN USCITA 12 
GRAFICI SI TROVA CLICCANDO SU:
 
 function_period_ok_3_richiami_result-p_pistoia (1)

 
Una volta compreso come richiamare e come gestire i risultati 
della function del periodogramma, 
ora siamo in grado di continuare di volta in volta la 
correzione. 
#In ogni caso gli scripts dei programmi presentati in R possono essere trasferiti, anche 
#un pezzo alla volta, direttamente sulla console di R con Copia-Incolla: il programma inizierà 
#nell'immediato a girare costruendo risultati e grafici i cui 
significati sono riassunti 
#nei remarks. 
 

Ho scritto le precedenti routines che sembrano funzionare, come si vede dai risultati,  considerando il periodogramma come una function, una specie di subroutine. Sarò costretto comunque a rimettere in discussione con calma altri programmi in R che contengono questa function tenendo conto dei cambiamenti!

CHI VOLESSE PUO’ VEDERE ANCHE GLI SCRIPTS DELLO STESSO AUTORE RELATIVI AL PERIODOGRAMMA E ALL’ANALISI DI FOURIER IN MATHEMATICA DI WOLFRAM VERS. 4.2, per fare un controllo dei risultati. Sono inseriti nelle appendici.

IL CONTROLLO  DEI PROGRAMMI IN R CHE SEGUONO E’ QUASI COMPLETATO

AD MAIORA

CHIUSA PARENTESI

________________________

period10001

6_CENNO A COMANDI IN R DI CALCOLO E ORGANIZZAZIONE DEI DATI

Filter, matrix e ts di R.
Discussione sui comandi di calcolo ed organizzazione sui dati. Commento sulle prime istruzioni di R (file di dati). Processi per automatizzare i “i conti”.

Si usa la funzione ts di R che riorganizza direttamente la serie originale (yt o as1)
in 12 colonne (mesi) e 5 righe (anni) per il calcolo poi con un for   delle medie di tutti i Gennaio, di Febbraio…

Discussione su filter

Applico direttamente la funzione Filter di R, sempre sulla serie originale (yt o as1), che, eliminando da essa (cioè da as1) la componente stagionale di ordine 12 + random, cambia contenuto in TREND + Ciclo + random? (divenendo la asf12).  Trovo poi la retta di regressione su asf12, i cui valori delle sue ordinate verranno tolti dalla serie originale; faccio il grafico di asf12 + retta di regr . Da controllare meglio. Smussando la yt, la asf12 è senza random? Vedere dopo gli script.

SEGUE IL COMMENTO SULLE  LE PRIME ISTRUZIONI DI R PER AUTOMATIZZARE I ‘CONTI’ DEL PROCESSO RIASSUNTO IN PRECEDENZA CHE ESPANDEREMO IN UN SECONDO TEMPO

I PRIMI INTERVENTI IN R

I primi passi nella schermata iniziale di R consistono nel caricare le Librerie suppletive di R necessarie a fornire i comandi, oltre a quelli di base, per gestire ed elaborare   i dati sperimentali. Con la funzione getwd() capisco dove ‘guarda’ R (cioè qual è la directory di lavoro) per cercare il file-dati da caricare e la funzione setwd (directory) permette di cambiare tale directory di lavoro. Fatta conoscere ad R la directory di lavoro, gli facciamo leggere il file-dati scelto per l’analisi (con il comando read.csv); nella fattispecie “As-Carlina1.csv”; la funzione file.show(“nome file.csv”) permette di visionare il contenuto del file che in generale è una matrice con righe e colonne è cioè un data.frame a cui si attribuisce un nome (per es., frame) e di cui è possibile conoscere le dimensioni col comando dim() o estrarre elementi. Le righe della matrice sono le osservazioni o casi; le colonne sono i campi o variabili. Con frame$variable si vuol dire di estrarre la variabile chiamata variable dal data.frame chiamato frame; frame[1,] significa prendere la prima riga, mentre frame[,3], prendere la terza colonna e così via. L’espressione summary(frame$variable) trova tutti i valori della variabile variabile contenuti nel data.frame chiamato frame. Così summary(frame[,3]), trova tutti i valori della colonna 3.

library (stats)

library(tseries)

library(lattice)

#library(graphics)

#getwd()

#setwd(“E:/R-2.12.2/bin/i386”)

# Se conosco dove è memorizzato il file con i dati da analizzare e la sua struttura

# utilizzo questi scripts iniziali

#as=read.csv(“As-Carlina.csv”)

#as1=as[,5]

#leggo la quinta colonna del data.frame: As-Carlina.csv dove c’è appunto yt

#as1=ts(as1) # considero as1 una serie storica

#ts.plot(as1) # plotto as1

Introdurremo invece direttamente la Serie yt o as1

as1= c(.033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043,

.066,.053,.082,.06,.08,.076,.056,.036,.05,.053,.056,.058,

.061,.063,.065,.068,.0815,.095,.079,.063,.069,.074,.08,.0765,.073,

.0695,.066,.093,.083,.073,.063,.074,.067,.06,.086,.08,.073,.067,

.089,.064,.087,.079,.07,.065,.06,.063)

7 – ECCO QUELLO CHE FAREMO CON R: ‘LETTURE’ SUI PROCESSI (‘CACCIA AI RESIDUI’ compresa)

ECCO QUELLO CHE FAREMO CON R

RIORGANIZZAZIONE DELLA SERIE STORICA MENSILE LUNGA CINQUE ANNI, As1, IN DODICI COLONNE (mesi)  E CINQUE RIGHE (anni) E BREVI LETTURE SUCCESSIVE

Il primo passo è riorganizzare la serie storica mensile della durata di 5 anni (5×12=60 mesi), in 12 colonne (mesi) e 5 righe (anni).

In ogni colonna ci sono 5 valori di ogni mese: nella prima, i 5 valori di gennaio, nella seconda, i 5 di febbraio e così via, Questo insieme costituisce il file as1.ts1. Per costruire as1.ts1 si può con R operare in almeno due modi. Una volta costituita la classificazione as1.ts1, si usa la funzione ts che permette poi tramite la subas, di meccanizzare con un for il calcolo delle dodici medie riferite ad ogni mese per i 5 anni (vedere dopo).

In sintesi con ts, che ha come argomenti: file, start e frequency, raggruppo i dati con i valori di ogni mese nella stessa colonna. Nella tabella appaiono il nome dei mesi su ogni colonna e il nome degli anni ad ogni riga; siamo così in grado di prendere i cinque dati di ogni mese (uno ogni dodici) per farne la media.

as1.ts1=ts(as1,start=1989,frequency=12)

Questa espressione fa anche la media di ogni colonna?

subas=as1.ts1[seq(1, length(as1), by=12)]

subas raccoglie i dati di gennaio per i 5 anni e ne fa la media(0.064); per ulteriori elaborazioni si può automatizzare con for.

Con for ottengo le 12 medie di ogni mese per 5 anni, mettendo un i al posto di 1 nell’argomento.

Guardiamo come.

mediamesi=c()

for(i in 1:12){mediamesi[i]=mean(as1.ts1[seq(i,length(as1),by=12)])}

ts.plot(mediamesi)

Se togliamo dal vettore mediamesi la media di as1, si ottiene una sorta di Effetto Stagionale mensile.

Mediamesi0=c()

Mediamesi0 =(mediamesi – mean(as1)) # da errore!

ts.plot(mediamesi0) # da errore! In effetti (vedere gli scripts al termine), non so perchè, sono necessarie variabili intermedie.

Vedremo dopo altri modi per il calcolo dell’Effetto Stagionale attraverso una Media Mobile e la funzione filter su as1, ambedue di ordine 12, modificando la stessa as1 o yt, in Mbt e asf12 di 12 termini più corte rispettivamente, contenenti ambedue almeno TREND lin.+ Ciclo (il random plausibilmente si cancellerebbe nel processo). La serie originale era pensata costituita da componente stagionale + TREND_ lin. + ciclo + random.

Calcolo la Media Mobile di ordine 12 su yt o as1; trovo la serie Mbt di 12 termini più corta, che è yt smussata della stagionalità, che serve a calcolare l’Effetto Stagionale, passando attraverso la sottrazione yt – Mbt , chiamata STRD (stagionalità più random:  Tabella 1, colonna 7, APPENDIX 3).

yt=as.vector(yt): n=length(yt); Mbt=c()

for(t in 7:n){Mbt[t] = (yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/12}

Mbt # di 12 termini più corta: 6 NA all’inizio e 6 NA alla fine, in tutto 48 dati (yt o as1 erano 60)

Mbt=Mbt[7:54]# elimino da Mbt gli NA; se i dati iniziali iniziavano da gennaio, Mbt inizia da un luglio e termina a un giugno

In alternativa applico il filter di ordine 12 su as1 o yt:

asf12=filter(yt, filter=rep(1/13,13)) # 12 o 13?

asf12

asf12=asf12[7:54] # elimino da asf12 gli NA

Le deboli differenze fra Mbt e asf12 è facile siano dovute alla Media Mobile manuale che è centrata.

Scorcio la as1 di 6 valori iniziali e finali per renderla lunga come Mbt e poi vi sottraggo Mbt:

STRD=as1[7:54] – Mbt # il primo valore di STRD corrisponde a luglio del primo anno.

Ciò significa: STRD= (ciclo+TREND+stagionalità+random) – (ciclo+TREND)=stagionalità+random; 60-12=48 termini.

Si calcola ora il Fattore Stagionale mensile (Tabella 1, colonna 8; 12 termini, APPENDIX 3) agendo con la funzione matrix su STRD e successivamente con colMeans: metto STRD (48 termini) sotto forma di matrice con dodici colonne (mesi) e 4 righe (anni)

stag = matrix(STRD, ncol=12, byrow=T)

Su questa matrice col comando colMeans posso trovare le 12 medie dei 4 valori, una per ogni mese, che metto in mediacol:

mediacol = colMeans(stag) # in mediacol rimangono i random?

Ordino le 12 medie ottenute, che iniziano da luglio del primo anno e terminano a giugno dell’anno successivo, da gennaio a dicembre:

mediacol=(mediacol[7:12],mediacol[1:6]) # Controllare se funziona!

mediacol # detto talora Fattore Stagionale

Copro poi i 5 anni ripetendo questi 12 valori:

ESAs = rep(mediacol,5) # Effetto stagionale di yt o as1

ESAs # serie lunga come yt o as1 originale

Dobbiamo ora togliere da yt o as1 l’Effetto Stagionale trovato per ottenere la serie iniziale destagionalizzata (stg, detta anche y1t o dst; Tabella 2, colonna 2) :

stg=c() #forse è meglio chiamala dst o y1t al posto di stg

dst=c() # dst o y1t in stg!

dst= yt–ESAs # TREND+ciclo_random; serie originale destagionalizzata (GRAF. N.4 a- CORR; b-PERIOD))

# Di fatto questa istruzione stranamente dava errore; forse è necessario introdurre variabili intermedie (vedere scripts relativi dopo). Controllare meglio!

# dst <- c(as1–ESAs) # TREND+ciclo_random #ancora da rifletterci!

dst  # è la serie originale destagionalizzata (in altre occasioni chiamata y1t). Di questa disegno il correlogramma: i dati sono autocorrelati; la statistica  DW , per K= 1,   N=60, rischio 0.05, cade a sinistra dell’intervallo dl-1.62 e si intravede la presenza di un TREND positivo (GRAF. N.4 a); dal periodogramma è sparito completamente il picco di frequenza 5 (periodo 60/5) dell’oscillazione stagionale (GRAF. N.4 b), presente invece  nel periodogramma della serie originale (GRAF. N.2 b) e nell’ESAs (GRAF. N.3 b).

y1t=dst

period0002

 

6-7 LA ‘CACCIA’ AI RESIDUI

Potremmo tentare di togliere da dst o y1t (TREND+ciclo_random) i random, provando a perequare con una Media Mobile 3*3 (pesata 1,2,3,2,1) per cui l’yt_smussato verrebbe a contenere ciclo+TREND che, tolto da dst o y1t, dovrei ottenere i random, se le ipotesi iniziali fossero giuste (vedere il testo di questi  scripts già in Blocco Note con  i risultati relativi, nel paragrafo prima delle Appendici (SECONDA PARTE). Alcuni ricercatori infatti propongono medie mobili a tre o 5 termini pesati 12321, per eliminare i random! PROVIAMO  invece il tentativo più classico che Segue: detrendizziamo linearmente la dst o y1t, sottoponendola ad una regressione lineare semplice (RLS)…

8 – INIZIO COPIA SCRIPTS DEL PROGRAMMA CENTRALE
Vari commenti possibili e riflessioni alternative

INIZIANO GLI SCRIPTS DEL PROGRAMMA RELATIVO A TUTTO IL PROCESSO DESCRITTO E DISCUSSO IN PRECEDENZA

Da copiare sul Blocco Note con copia/incolla e poi sulla consolle di R (o direttamente su R). In generale i programmi scritti in R o si fanno girare scrivendo una istruzione dietro l’altra , oppure, per es., si copiano gli  scripts sul Blocco Note od altro semplice programma di scrittura (anche quelli indirizzati ad R),  con copia/incolla e poi  sulla consolle di R.

Altro problema in R,  quando si copiano programmi pronti dal Blocco Note, è quello di gestire la visione dei diversi grafici, man mano che il programma gira. In questo caso è necessario che il programma controlli i grafici nel senso, per es., di far fermare il programma all’apparire del grafico nella finestra grafica, nella attesa della pressione di un tasto. Per questo esiste un semplice comando, da inserire, per es., all’inizio degli scripts, che ha la sintassi: par(ask=T).  Si può utilizzare in alternativa o insieme il comando par(mfrow=c(x,y) , che divide l’unica finestra grafica in x*y parti; x=2 e y=3, la finestra rimane divisa in 6 parti e può contenere 6 grafici e così via.

COMMENTO

Il seguente programma è stato utilizzato da prima nell’analisi della serie As originale, nel modo come era nato, cioè iniziando il lavoro con l’applicare la media mobile direttamente sulla serie originale, arrivando però ad una serie residuale  che può non rispettare i criteri richiesti (rivedremo i passaggi). Questo primo modo  è quello che per ora continua  a venire presentato e commentato.

Per osservare il percorso che parte invece, forse più giustamente, dalla serie detrendizzata (il trend in una serie  può  ‘disturbare’ il computo dell’Effetto Stagionale?), basta sostituire nel vettore as1, invece dei valori originali, i valori della serie detrendizzata, nel nostro caso per es. copiati dai programmi del Mathematica di Wolfram (Appendix 5) o dall’altro post  ‘Verso il periodogramma’, sempre dello stesso autore o… si rifaccia il conto. Basta togliere il cancelletto (#) all’as1 che riporta i valori della serie detrendizzata e ‘cancellettando’ invece i valori  dell’as1 che riporta  quelli della serie originale (e viceversa). I risultati ipoteticamente dovrebbero migliorare. Proviamo.

RESIDUI ANALISI SU As1 DETRENDIZZATO-P_Pistoia

Col tempo e la pazienza è possibile che riporti, in un link, il programma in pdf  che, in as1, ha i suoi valori detrendizzati, con più di una  decina di grafici relativi, con risultati e commenti! Vedere sopra la prima versione.

8-INIZIO COPIA PROGRAMMA

library(tseries)

library(lattice)

library(graphics)

as1= c(.033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043,.066,.053,

.082,.06,.08,.076,.056,.036,.05,.053,.056,.058,

.061,.063,.065,.068,.0815,.095,.079,.063,.069,.074,.08,.0765,.073,

.0695,.066,.093,.083,.073,.063,.074,.067,.06,.086,.08,.073,.067,

.089,.064,.087,.079,.07,.065,.06,.063)

# Per partire con la detrendizzazione, ad as1 sostituiamo i valori della stessa serie detrendizzata.

# Togliamo il cancelletto e mettiamo la nuova serie detrendizzata  qui e ‘cancellettiamo’ la precedente:

#as1 =c(-.018,.0089,-.0013,.0062,.0077,.0093,

#-.0012,-0.0187,-.0091,.00039,.0069,-.0085,

#-.0040,-.014,.0080,-.0054,.0231,.00064,

#.0202,.0157,-.0048,-.0252,-.0117,-.0092,

#-.0066,-.0051,-.0026,-.0011,.00048,.0030,

#.0160,.029,.013,-.0039,.0017,-.0092,

#.012,.0076,.0038,-.00018,-.0042,.0223,

#.012,.0014,-.0090,.0015,-.0060,-.0134,

#.0121,.0056,-.0018,-.0083,.0132,-.00122,

#.0102,.0018,-.0077,-.0131,-.0186,-.0161)

as1=ts(as1)

par(ask=T)

par(mfrow=c(1,2))

yt=c()

yt=as1

ts.plot(yt, main=”GRAF. N.2_yt_ SERIE CORRETTA”)

lines(yt,type=”l”)

acf(yt, main=”GRAF. N.2_a-yt_CORR_SERIE CORRETTA”)

#alfa=-pi/2 -> 270°; alfa=-1.175 rad (cioè -100°) -> 260°

#INIZIO FUNCTION

PRDGRAM<- function(y1,n1,m1) {

# VALORI DEL PARAMETRO ak

a0=c(); k=0; a0=0;

for(t in 1:n1){a0=a0+y1[t]*cos(2*pi*t*k/n1)}

a0

a0=a0*2/n1;a0=a0/2

a0

a=c();a[1:m1]=0;

for(k in 1:m1) {

for(t in 1:n1){

a[k]=a[k]+y1[t]*cos(2*pi*t*k/n1)}}

a=2*a/n1

# vALORI DEL PARAMETRO bk

b=c();b[1:m1]=0;b0=0;k=0

for(k in 1:m1) {

for(t in 1:n1){

b[k]=b[k]+y1[t]*sin(2*pi*t*k/n1)}}

a <- as.vector(a)

for(i in 1:m1){

if (abs(a[i]) < 1e-10) a[i]=0 else a[i]=a[i]}

a

for(i in 1:m1){

if (abs(b[i]) < 1e-10) b[i]=0 else b[i]=b[i]}

b=2*b/n1

b

# AMPIEZZE

#ro[1:m1]=0

ro <- sqrt(a^2 +b^2)

for(i in 1:m1){

if (abs(ro[i]) < 1e-10) ro[i]=0 else ro[i]=ro[i]}

# CALCOLO DELLA FASE DI OGNI ARMONICA

# RIPORTANDO IL VALORE AL QUADRANTE GIUSTO

f2=c()

f2[1:m1]=0

for(i in 1:m1){

f2[i] <- abs(a[i]/b[i])

f2[i] <- atan(f2[i])*180/pi}

f2 =as.vector(f2)

f2

#f2[1:m1]=0 un f2[1:m1] di troppo!

phi <- c()

for(i in 1:m1){

# f2 <- abs(a[i]/b[i]);

# f2 <- atan(f2)*180/pi;

if(b[i]>0 & a[i]>0) phi[i] = f2[i];

if(b[i]<0 & a[i]>0) phi[i] = 180-f2[i];

if(b[i]<0 & a[i]<0) phi[i] = 180+f2[i];

if(b[i]>0 & a[i]<0) phi[i] = 360-f2[i];

if(b[i]==0 & a[i]==0) phi[i] = 0;

if((b[i]<0 & b[i]>0) | a[i]==0) phi[i]=0;

if(b[i]==0 & a[i]>0) phi[i]=90;

if(b[i]==0 & a[i]<0) phi[i]=360-90

}

# PHI FASE ARMONICHE

phi=as.vector(phi)

phi

param_a <-a

param_b <-b

ampiezza <- ro

fase <- phi

# Qui, al termine della function si pone il valore di un’unica

# variabile che esce o, se escono più variabili, si usa

# un data.frame: data=data.frame(x1,x2,…).

# Ogni chiamata alla function permette di includere l’unica

# variabile o i data nel nome della chiamata:

# es. periodxx=nome.function(x1,x2,…)

data <-data.frame(a,b,ro, phi)

data

# questa matrice esce dalla function e viene ‘raccolta’ nella variabile nomexx (es.,periodxx)

}

#FINE FUNCTION

#Per richiamare la function:

#nomexx = PRDGRAM(Nome_var_vettore dati, numerosità del campione, numero di armoniche da cercare)

yt=as1

yx=as1

nx=length(yt)

#periodogramma yt

if (nx/2== nx%%2) mx=nx/2-1  else mx=(nx-1)/2 #da controllare se non sia necessario uno swap!

period_as1= PRDGRAM(yx, nx ,mx)

#par(mfrow=c(1,4)) 
#plot(a, xlab="Armoniche = N° osc. in n dati") 
#plot(b, xlab="Armoniche = N° osc. in n dati")

 period_as1 # tabella dei dati in uscita: ak, bk, ampiezze, fasi
# Con questa tabella si costruiscono le formule analitiche delle armoniche

period_as1$ro # vettore delle ampiezze

plot(period_as1$ro,type="l",main="GRAF. N.2; a-period_yt", 
xlab="Armoniche = N° oscill. in n dati", ylab="ampiezza")
 






As1_Corr_graf


period_su_As0001

par(mfrow=c(1,4))

plot(period_as1$a,ylab="Parametro a")
plot(period_as1$b,ylab="Parametro b") 
plot(period_as1$ro,type="l",main="PERIODOGRAMMA di as1", 
xlab="Armoniche = N° osc. in nx dati", ylab="ampiezza") 
plot(period_as1$phi,type="l", ylab="Fase")

#Per vedere i risultati trasferiti dalla consolle di R in pdf
#del precedente frammento di programma cliccare sotto:
As1_corr_R - P. Pistoia

par(mfrow=c(1,1)) 

as1.ts1=ts(as1,start=1989,frequency=12)
subas=as1.ts1[seq(1,length(as1),by=12)]

#-----------------------------------------------

# Gli scripts che riguardano il calcolo delle variabili vettoriali mediamesi e Mmesio per ora sono esclusi.

#mediamesi=c()

#for(i in 1:12){mediamesi[i]=mean(as1.ts1[seq(i,length(as1),by=12)])}

#ts.plot(mediamesi,main”mediamesi in 5 anni”)

#Mmesi0=c()

#a=mediamesi

#b=mean(as1)

#c=a-b

#Mmesi0=c () 12 valori medi meno la media serie originale; una specie di Effetto Stagionale

#Mmesi0=mediamesi – mean(as1)

#ts.plot(Mmesi0) # da controllare: Effetto Stagionale da confrontare con mediacol

#acf(Mmesi0, main=”CORR_Mmesi0″)

#Mmesi0 # da confrontare con mediacol

#—————————————————————————–

yt=as1

yt=as.vector(yt);  n=length(yt); Mbt=c()

for(t in 7:n){Mbt[t] = (yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+

yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/12}

#SI LAVORA ORA SU Mbt

Mbt #è quello che resta di as1, dopo la media mobile 12 (trend-ciclo_random)

Mbt=Mbt[7:54]# elimino da Mbt gli NA; Tabella N.1, colonna 6.

ts.plot(Mbt, main=”GRAF. N.4′; Mbt )

acf(Mbt, main=”GRAF. N.4′; acf_Mbt”)

#Periodogramma Mbt, serie più corta senza stagionalità

y3=c()

y3=Mbt

n3==length(y3)

if (n3/2== n3%%2) m3=n3/2-1  else m3=(n3-1)/2

#ifelse(nx%%2 > 0, m=(n-1)/2, m=n/2-1

period_Mbt=PRDGRAM(y3, n3 ,m3)

period_Mbt # tabella ak, bk,ro,phi

period_Mbt$ro #valori ampiezza di Mbt

ts.plot(period_Mbt$ro, main=”GRAF. N.4′; period_Mbt”)

# Filtro col comando filter la serie yt

asf12=filter(yt, filter=rep(1/13,13))

asf12

asf12=asf12[7:54] # elimino da asf12 gli NA

#Mbt  contiene l’as1 senza la stagionalità; in as1 però rimane quello

#che aveva ( trend-stagionalità-ciclo_random); se da as1, tolgo as1 senza la stagionalità,

#trovo la stagionalità e random (STRD) che trasformo in Effetto Stagionale eliminando

#una buona parte dei random.

FINE OPERAZIONI SU Mbt

#INIZIO CALCOLI CHE PORTANO ALL’EFFETTO STAGIONALE

STRD=as1[7:54]-Mbt # componente stagionale + random, serie più corta

STRD # da essa si estraggono gli Effetti Stagionali; TABELLA N.1, colonna 7:APPENDIX 3.

#Processo per costruire gli Effetti Stagionali attraverso STRD

stag = matrix(STRD, ncol=12, byrow=T) # variabile di passaggio a mediacol

mediacol = colMeans(stag) #in mediacol rimangono i random? o si perdono nella mediazione; 12 valori osc. annuale.

# in questo primo mediacol ottengo 12 valori a partire da luglio; TABELLA N.1, colonna 8; APPENDIX 3.

mediacol=c(mediacol[7:12], mediacol[1:6]) # qui ordino da gennaio a dicembre i 12

#valori dell’ EFFETTO STAGIONALE;

mediacol # è detto anche Fattore Stagionale; TABELLA N.1, colonna 8; APPENDIX 3.

#ts.plot(mediacol) # L’oscillazione annuale che copre 12 mesi (max in luglio)

ESAs = rep(mediacol,5) # l’Effetto Stagionale che ‘copre’  i 60 dati di yt o as1

ESAs #serie lunga come yt o as1 originale; TABELLA N.2, colonna 1; APPENDIX 3.

ts.plot(ESAs,main=”GRAF. N.3′; EFFETTO STAGIONALE”)

ESAs1 = rep(mediacol,2)

ts.plot(ESAs1,main=”GRAF. N.3; a-“EFFETTO STAGIONALE RLS”) #2 ascillazioni

acf(ESAs1, main=”GRAF. N.3′; b-CORR_EF. STAG. 2 ripet”)

#periodogramma ESAs1

yes=ESAs1

nes=length(ESAs1)

if (nes/2== nes%%2) mes=nes/2-1  else mes=(nes-1)/2

period_ESAs1=PRDGRAM(yes, nes, mes)

period_ESAs1

period_ESAs1$ro

plot(period_ESAs1$ro,type=”l”, main=”GRAF. N.3; b-Period_ro EFFETTO STAG.”)

dst=c() #attivo la serie destagionalizzata; dst o y1t ; TABELLA N.2, colonna 2; APPENDIX 3.

dst=as1-ESAs # da provare se funziona; destagionalizza

dst

#e=as1

#f=ESAs

#g=e-f

#dst=g

#Potrei smussare dst con una Media Mobile Pesata (3*3, cioè con  pesi 1,2,3,2,1) per tentare

#di eliminare la componente casuale

#Si otterrebbe una serie (y1t) contenente CICLO+TREND, che se la tolgo dalla serie destagionalizzata

#dst precedente dovrei ottenere il #RESIDUO.

yd=dst

nd=length(dst)

if (nd/2== nd%%2) md=nd/2-1  else md=(nd-1)/2

period_dst=PRDGRAM(yd, nd, md)

period_dst

period_dst$ro

plot(period_dst$ro,type=”l”,main=”GRAF. N.4: b-Period. dst o y1t”)

 

#PROVIAMO INVECE A TOGLIERE IL TREND DALLA dst o y1t

plot(dst,type=”l”, main=”yt-destagionalizzata”) # la y1t o dst= yt destagionalizzata= ciclo+TREND +random (GRAF. N.4′)

acf(dst, main=”GRAF. N4; a-CORR-y1t o dst”)

# Se elimino il TREND da dst ottengo CLRD e posso controllare con CORR se

# ciò che resta è da considerare residuo. yt-ESAs-TREND = CLRD

# CLRD =yt-TREND- ESAs

#Calcolo il trend di dst per toglierlo da yt-ESAs o da y1t ed ottenere CLRD

t=seq(1:60)

fitdst=lm(dst~t)

abline(lm(dst~t))

summary(fitdst)

resid(fitdst)

p=predict(fitdst,data.frame(t=c(1,60)))

CLRD=c()

CLRD=dst-p

CLRD

CLRD=yt-ESAs-p

n1=length(p)

ts.plot(CLRD, main=”GRAF. N.5-RESIDUI” )

acf(CLRD, main=”GRAF. N.5; a-CORR_CLRD”)

#periodogramma di CLRD

yr=CLRD

nr=length(yr)

if (nr/2== nr%%2) mr=nr/2-1  else mr=(nr-1)/2

period_clrd=PRDGRAM(yr, nr ,mr)

period_clrd

period_clrd$ro

plot(period_clrd$ro,type=”l”,main=”GRAF. N.5; b-Period. CLRD”)

#da controllare ancora!

#FINE COPIA PROGRAMMA  da trasferire in Blocco Note o direttamente sulla consolle di R

PER VEDERE SCRIPS E COMMENTI PRECEDENTI + RESULT  IN pdf CLICCARE SOTTO:

ANALI SU As1 DETRENDIZZATO-P_Pistoia

BLOCCO_NOTE_PERCORSO_PERIOD0-P_Pistoia

BLOCCO_NOTE_PERCORSO_PERIOD-P_Pistoia

COMMENTO

Sembra che in questo processo CLRD (residui) non siano random e siano correlati (da provare altri tests). Proviamo però a fare altre misure di controllo. Se è così percorriamo altre vie già accennate. Possiamo partire col detrendizzare la serie originale as1, rendendola nelle previsioni stazionaria, e procedere con gli stessi scripts già usati.

Se ai dati originali di as1  sostituiamo i  dati originali senza però il trend rettilineo (serie originale detrendizzata, nelle previsioni resa stazionaria), possiamo vedere che cosa accade. In effetti sembrerebbe che, se invece partiamo coll’applicare  una media mobile di ordine 12 su una serie non stazionaria, si possa arrivare a questo risultato.

Se si parte con una detrendizzazione (serie stazionaria) e poi si applica la media mobile per trovare gli Effetti Stagionali, che togliamo dalla serie originale, e si procede con successiva detrendizzazione su serie_originale- Eff. Stag., si prevede un aumento dell’ R-quadro e forse un risultato più idoneo.

Si fa prima una regressione sulla serie di partenza; attraverso una media mobile si cercano gli Effetti Stagionali che togliamo dalla serie originale (la non stazionarità può disturbare gli effetti stagionali), ottenendo la serie originale destagionalizzata;  si fa infine una seconda regressione su questa differenza, cioè sulla serie destagionalizzata, che può  contenere appunto TREND + CICLO_RANDOM, ricavando poi il CICLO_RANDOM (da verificare).

Altro percorso: analisi dei dati trimestrali della stessa serie as1.

9 – PRIMA PARTE IN SINTESI

PRIMA PARTE IN SINTESI

LA SERIE PEREQUATA Mbt, L’EFFETTO STAGIONALE ESAs, LA SERIE DESTAGIONALIZZATA y1t (dst), LA y1t SMUSSATA: ciclo+TREND (y1ts),

LA COMPONENTE CASUALE O RESIDUI

 IL CORRELOGRAMMA, IL TEST DI DURBIN WATSON  e di LINMUDHOLKAR

Dopo aver eliminato la componente stagionale (ESAs : APPENDIX3, TABELLA N.2, col.1) dalla serie originale yt  (APPENDIX3,  TABELLA N.1, col.5) sottraendo yt – ESAs, si ottiene la serie destagionalizzata (dst ovvero y1t:  APPENDIX3, TABELLA N.2, col.2). In questa serie sanno rimasti gli eventuali ciclo, TREND e la componente random. Sottopongo quest’ultima al programma CORR : i dati sono autocorrelati positivamente (la statistica di Durbin Watson , per k= 1, N=60 e rischio 0.05, cade a sinistra dell’intervallo dl-du (1.55-1.62) e si nota la presenza un TREND positivo (GRAF. N.4 a); dal periodogramma è completamente scomparso il picco di frequenza 5 (periodo 60/5) dell’oscillazione stagionale (GRAF. N.4 b), presente invece nel periodogramma della serie originale (GRAF. N.2 b) e nell’ESAs (GRAF. N.3 b). Leggere Appendice 1.

Smussiamo la serie y1t o dst con una media mobile pesata 3*3  (1,2,3,2,1), per eliminare la componente casuale. Si ottiene così la serie y1ts (CLTR : APPENDIX3, TABELLA N.2, col.3) che potrebbe contenere nelle previsioni ciclo e TREND (CLTR). Sottraendo da y1t o dst (ciclo+TREND+Random) la serie y1ts che potrebbe contenere ciclo+TREND si dovrebbe ottenere la componente casuale o serie random. Testando tale serie col programma CORR, risulta che essa è rumore di fondo (white noise), avvalorando il processo usato fino a questa fase. Infatti la DW, per k=1, n=60 e alfa =0.05, ha valore 2.57 (vedere tabella Appendice 2) per cui esce dall’intervallo ricavato dalle tabelle dl-du (1.55-1-62): assenza di correlazione interna. la statistica di LIN-MUDHOLKAR, per la gaussiana, per alfa=0.05 e r=+/- 0.403 ricavato dalle tabelle, ha il valore -0.0416, cioè cade all’interno dell’intervallo di r, per cui non posso rifiutare l’ipotesi nulla: la distribuzione dei residui così calcolati è da considerarsi gaussiana. Forse è proprio l’effetto di non aver esplicitata la serie CLTR  con il calcolo del TREND a favorire la compatibilità dei residui alle ipotesi iniziali.

MODELLO DI REGRESSIONE LINEARE SEMPLICE  (RLS) E TESTS RELATIVI.

ADEGUAMENTO DEL MODELLO DI REGRESSIONE ALLA POPOLAZIONE. COEFFICIENTI DELLA RETTA ED R-q

TEST SU R-q E LA F DI FISHER , TESTS SUI COEFFICIENTI DELLA RETTA, INTERVALLO DI CONFIDENZA.

RESIDUO DELLA REGRESSIONE E L’AFFIDABILITA’.

Applichiamo invece  a y1t o y1ts (APPENDIX3, TABELLA N.2, col.2;  TABELLA N.2, col.3) )  un modello di regressione per separare il TREND dai loro contenuti.  Proviamo una regressione lineare con la sola variabile, il tempo, misurato in mesi (un solo regressore, k1=1 nelle tabelle DW), senza preoccuparci per ora se tale modello sia idoneo. Lo controlleremo dall’analisi dei residui. Se sono rispettate le assunzioni di linearità, una buona misura dell’adeguamento del modello lineare ai dati è il Coefficiente di Determinazione R-quadro. La sua radice quadrata R è il Coefficiente di correlazione di Pearson detto anche Multiple-R. Se R-q è 1, significa che tutte le osservazioni cadono sulla retta di regressione; se  zero, nessuna associazione lineare fra le variabili, anche se può esserci una relazione non lineare. R-q può così essere interpretato come la proporzione della variazione di y ‘spiegata’ dal modello , come precisato in altre occasioni. Su y1t o su y1ts, si opera con una regressione lineare calcolando bo e b1 ed ottenendo in ambedue i casi, come era prevedibile, differendo le due serie per la sola componente casuale, la stessa retta di regressione seguente (APPENDIX3, TABELLA N.3, col.8 e  APPENDIX3, TABELLA N.4, col.3 per i valori previsti):

y_predetto = TREND = TREND’ = 0.051 + 0.00005*t

Vedere  APPENDIX3, TABELLA N.3, col.5, per i risultati intermedi al fine del cacolo dei coefficienti della retta.

Nel nostro caso  R-q = 0.44, cioè il modella spiega il 44% della variazione complessiva della variabile dipendente. Per controllare l’ipotesi  nulla che nella popolazione non esista relazione lineare (R-q_pop.=0), si procede con l’analisi della varianza. Per tutti i particolari dei ‘conti’ che seguono vedere, per es.,  il Post ‘Un percorso verso il periodogramma’ su questo stesso BLOG. Seguendo le indicazioni riportate nel paragrafo relativo a questo argomento nel Post  su nominato, si ottiene la seguente tabella:

                                                       GL          SOMMA DEI QUADRATI          MEAN SQUARE

Variazione di regressione       1                              0.00435                                       0.00435

Variazione residuale                58                           0.00559                                       0.000096

TOT                                                                         0.00994

da cui: Somma quadrati reg./Somma quadrati tot = 0.44, cioè R-quadro.

La statistica  F di Fisher che permette di saggiare l’ipotesi nulla: R-quadro pop.=0, è 0.00435/0.000096 = 45.31, da cui, riportata sulle tavole con 1 e 58 gradi di libertà (GL), si ricava una significanza per F minore di 0.00001, per cui si respinge l’ipotesi nulla e nella popolazione esisterà con alta probabilità una relazione lineare.

Procedendo ancora a prove incrociate si può testare l’ipotesi che  b1_pop. =0; si calcola la statistica T per b1: pendenza/errore standard_pend, ottenendo ERb1=7.31*10^-5 perché b1=0.000492, risulta T=6.73, che dalle tabelle relative per 58 gradi di libertà (GL=N-2) si ha una significanza per T di 0.0000..<<0.05, per cui si respinge l’ipotesi nulla che la pendenza della popolazione sia zero (quindi esiste dipendenza lineare).

Procedendo, nell’intervallo di confidenza al 95% per la pendenza non potrà allora il valore zero. Infatti calcolando ESb1 come suggerito da altri interventi (0.000073), l’intervallo di confidenza al 95% per beta1 risulta (con 58 GL):

b1-1.96*ESb1 <=  beta1 <=  b1+ 1.96*ESb1

0.00492-0.00014 <= beta1 <= 0.00492+0.00014

0.00035 <= beta1 <=0.00063

Si vede chiaramente come i vari tests, se affidabili, confermano la presenza di un trend lineare nei dati.

Togliendo da y1t la serie del trend, si otterrà la serie CLRD ( APPENDIX3, TABELLA N.4, col.4) con l’eventuale ciclo + la componente casuale (random) I residui della regressione, per il modo con cui abbiamo proceduto, sono proprio i valori della serie CLRD. E’ prevedibile che questa serie, se davvero includerà una componente ciclica significativa,non risulterà rispetterà almeno qualche condizione fra quelle ipotizzate sui residui (indipendenza, varianza costante…). procederemo ad investigare questa serie sui residui. Applicando ad essi il programma CORR, otteniamo il grafico, GRAF. N.5 a) correlogramma) e 5b (periodogramma), il test per l’indipendenza di Durbin Watson e quello per la normalità di Lin Mudholkar. Il valore di DW è risultato 1.378, che (N=60, K’=1 e alfa =0.05) esce a sinistra dell’intervallo 1.55-1.62 e quindi l’autocorrelazione è positiva, mentre il test per la gaussiana (rischio 0.05, N=60, r=+/-0.403, fornisce rc=-0.0298, cioè all’inteno dell’intervallo, per cui non posso rifiutare l’ipotesi nulla (la serie ha distribuzione gaussiana). Graficando i residui standardizzati con la variabile pred pure standardizzata, si ottiene il   GRAF. N. 6 a dove non appaiono patterns evidenti. Dal GRAF. N.6 b invece, ottenuto riportando i residui per ogni unità di tempo, si evidenzia una qualche variazione della varianza dei residui (eteroscedasticità, variazione a clessidra). Allora i tests che fanno riferimento al comportamento della popolazione universo (in particolare gli F-tests) possono non essere affidabili e quindi incerto il modello di regressione usata.

Al termine dell’analisi con un modello di regressione lineare semplice, tenteremo ulteriori approfondimenti alla ricerca di un maggiore R-quadro, ma specialmente di una maggior concordanza dei residui alle condizioni iniziali (linearità, normalità, indipendenza, omoscedasticità).

stat_period_corr0001

stat_period_corr0002


 

i

stat_reg_mlr_blog0001

10 – SECONDA PARTE IN SINTESI

SECONDA PARTE IN SINTESI: UN ALTRO TENTATIVO SULLA CACCIA AI RESIDUI (senza passare attraverso una regresssione)

SCRIPTS IN BLOCCO NOTE:  DA COPIARE DIRETTAMENTE SULLA CONSOLLE DI R

# Intanto trascriviamo nel vettore yt i 60 dati della conc. As da cui partire. Impariamo poi a calcolare con R gli altri 5 vettori dati che faranno parte dell'analisi della nostra serie
# reale e quindi della nostra esercitazione. Calcoliamo come primo vettore Mt (media mobile di ordine  12 su yt.

yt=c(.033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043,.066,.053,.082,.06,.08,.076,.056,.036,.05,
.053,
.056,.058,.061,.063,.065,.068,.0815,.095,.079,.063,.069,.074,.08,
.0765,.073,.0695,.066,.093,.083,.073,.063,.074,.067,.06,.086,.08,.073,.067,.089,.064,.087,.079,.07,.065,.06,.063)

t=1

#Come primo passo grafichiamo i dati e osserviamo se ci sono regolarità all'interno (trend, oscillazioni), precisiamo le ipotesi con un correlogramma ed un periodogramma, I dati sono mensili: Ipotizziamo comunque una oscillazione di periodo 12.

# Calcoliamo, come primo vettore, Mt (media mobile centrata e pesata di ordine 12 su yt).

yt=as.vector(yt) ; n=length(yt); Mt=c()
for(t in 7:n){Mt[t] = (yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+
yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/12}
Mtc=Mt[7:54]

mt=filter(yt,filter=rep(1/13,13))
# calcolo della Mm col comando filter di R: confrontare i due risultati
mt #OK

# in Mt ci sono i 48 (60-12) dati Media mobile di yt, da cui costruisco i 12 Fattori Stagionali (FStag) 
facendo la media dei 4 gennaio, dei 4 febbraio ecc. a partire da luglio, perchè Mt iniziava con luglio.
FSTag0 = matrix(Mtc, ncol=12, byrow=T)
# matrice di 4 righe (valori dei 12 mesi dei 4 anni) e 12 colonne con in ognuna le 4 conc. dei mesi dello stesso nome a partire da un luglio.
FStag1=colMeans(FSTag0)
#  in FStag1 trovo le 12 medie dei 4 mesi dello stesso nome (inizio luglio, fine giugno)
FStag=c(FStag1[7:12], FStag1[1:6]) # da controllare! Ordino da gennaio. OK
ESAs=rep(FStag,5) # EFFETTO STAGIONALE As
ESAs # 60 dati
Yt1=yt-ESAs # Ciclo+Trend+Random
Yt1 # 60 dati
Yt1c=Yt1[3:58]
Yt1s=c()
for(i in 1:60){Yt1s[i]=(Yt1[i-2]+2*Yt1[i-1]+3*Yt1[i]+2*Yt1[i+1]+
Yt1[i+2])/9}
Yt1s=as.vector(Yt1s) # smusso Yt1 con Mm 3*3

ns=length(Yt1s) # più corto di 4 elementi
Yt1s # yt1 senza random; cioè Ciclo+Trend

par(ask=T)

Yt1s=Yt1s[3:(ns-2)]

RD=Yt1c-Yt1s # forse si tratta solo di random: il Ciclo?

#Riportiamo in una tabella 1 5 vettori dell'analisi su yt

#data <- data.frame(t,yt,ESAs,Yt1,RD)

# Facciamo i 5 correlogrammi dei vettori trovati: yt, ESAs, Yt1, Yt1s, RD
coyt=acf(yt)
coyt
coESAs=acf(ESAs)
coESAs
coYt1=acf(Yt1)
coYt1s=acf(Yt1s)
coYt1s
coRD=acf(RD)
coRD
# Interessante abbinare il correlogramma con il periodogramma e da controllare i correlogrammi con il programmino scritto dall'autore


RISULTATI DEL PROGRAMMA PRECEDENTE (come si vede gira senza errori!)


> # Interessante abbinare il correlogramma con il periodogramma.
> # Intanto trascriviamo nel vettore yt i 60 dati della conc. As da cui partire. Impariamo poi a calcolare con R gli altri 5 vettori dati che faranno parte dell'analisi della nostra serie
 # reale e quindi della nostra esercitazione. Calcoliamo come primo vettore Mt (media mobile di ordine  12 su yt.

> 
> yt=c(.033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043,.066,.053,.082,.06,.08,.076,.056,.036,.05,
+ .053,
+ .056,.058,.061,.063,.065,.068,.0815,.095,.079,.063,.069,.074,.08,
+ .0765,.073,.0695,.066,.093,.083,.073,.063,.074,.067,.06,.086,.08,.073,.067,.089,.064,.087,.079,.07,.065,.06,.063)
> 
> t=1
> 
> #Come primo passo grafichiamo i dati e osserviamo se ci sono regolarità all'interno (trend, oscillazioni), precisiamo le ipotesi con un correlogramma ed un periodogramma, I dati sono mensili: Ipotizziamo comunque una oscillazione di periodo 12.
> 
> # Calcoliamo, come primo vettore, Mt (media mobile centrata e pesata di ordine 12 su yt).
> 
> yt=as.vector(yt) ; n=length(yt); Mt=c()
> for(t in 7:n){Mt[t] = (yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+
+ yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/12}
> Mtc=Mt[7:54]
> 
> mt=filter(yt,filter=rep(1/13,13)) # 13 o 12?
> # calcolo della Mm col comando filter di R: confrontare i due risultati
> mt #OK
Time Series:
Start = 1 
End = 60 
Frequency = 1 
 [1]         NA         NA         NA         NA         NA         NA
 [7] 0.05115385 0.05192308 0.05369231 0.05384615 0.05561538 0.05553846
[13] 0.05684615 0.05861538 0.06015385 0.05938462 0.05892308 0.05815385
[19] 0.05876923 0.05915385 0.06053846 0.06030769 0.06123077 0.06015385
[25] 0.06180769 0.06296154 0.06319231 0.06373077 0.06626923 0.06811538
[31] 0.07019231 0.07176923 0.07292308 0.07357692 0.07380769 0.07596154
[37] 0.07711538 0.07646154 0.07400000 0.07361538 0.07392308 0.07323077
[43] 0.07415385 0.07415385 0.07388462 0.07342308 0.07492308 0.07476923
[49] 0.07430769 0.07400000 0.07376923 0.07392308 0.07284615 0.07253846
[55]         NA         NA         NA         NA         NA         NA
> 
> # in Mt ci sono i 48 (60-12) dati Media mobile di yt, da cui costruisco i 12 Fattori Stagionali (FStag) facendo la media dei 4 gennaio, dei 4 febbraio ecc. a partire da luglio, perchè Mt iniziava con luglio.
> FSTag0=matrix(Mtc, ncol=12, byrow=T)
> # matrice di 4 righe (valori dei 12 mesi dei 4 anni) e 12 colonne con in ognuna le 4 conc. dei mesi dello stesso nome a partire da un luglio.
> FStag1=colMeans(FSTag0)
> #  in FStag1 trovo le 12 medie dei 4 mesi dello stesso nome (inizio luglio, fine giugno)
> FStag=c(FStag[7:12], FStag1[1:6]) # da controllare! Ordino da gennaio. OK
> ESAs=rep(FStag,5) # EFFETTO STAGIONALE As
> ESAs # 60 dati
 [1] 0.06147115 0.06221154 0.06285577 0.06317308 0.06323077 0.06334615
 [7] 0.05878846 0.05965385 0.06022115 0.06050962 0.06085577 0.06113462
[13] 0.06147115 0.06221154 0.06285577 0.06317308 0.06323077 0.06334615
[19] 0.05878846 0.05965385 0.06022115 0.06050962 0.06085577 0.06113462
[25] 0.06147115 0.06221154 0.06285577 0.06317308 0.06323077 0.06334615
[31] 0.05878846 0.05965385 0.06022115 0.06050962 0.06085577 0.06113462
[37] 0.06147115 0.06221154 0.06285577 0.06317308 0.06323077 0.06334615
[43] 0.05878846 0.05965385 0.06022115 0.06050962 0.06085577 0.06113462
[49] 0.06147115 0.06221154 0.06285577 0.06317308 0.06323077 0.06334615
[55] 0.05878846 0.05965385 0.06022115 0.06050962 0.06085577 0.06113462
> Yt1=yt-ESAs # Ciclo+Trend+Random
> Yt1 # 60 dati
 [1] -0.0284711538 -0.0192115385 -0.0118557692 -0.0041730769 -0.0022307692
 [6] -0.0003461538 -0.0057884615 -0.0236538462 -0.0142211538 -0.0045096154
[11]  0.0021442308 -0.0131346154 -0.0084711538 -0.0192115385  0.0031442308
[16] -0.0101730769  0.0187692308 -0.0033461538  0.0212115385  0.0163461538
[21] -0.0042211538 -0.0245096154 -0.0108557692 -0.0081346154 -0.0054711538
[26] -0.0042115385 -0.0018557692 -0.0001730769  0.0017692308  0.0046538462
[31]  0.0227115385  0.0353461538  0.0187788462  0.0024903846  0.0081442308
[36]  0.0128653846  0.0185288462  0.0142884615  0.0101442308  0.0063269231
[41]  0.0027692308  0.0296538462  0.0242115385  0.0133461538  0.0027788462
[46]  0.0134903846  0.0061442308 -0.0011346154  0.0245288462  0.0177884615
[51]  0.0101442308  0.0038269231  0.0257692308  0.0006538462  0.0282115385
[56]  0.0193461538  0.0097788462  0.0044903846 -0.0008557692  0.0018653846
> Yt1c=Yt1[3:58]
> Yt1s=c()
> for(i in 1:60){Yt1s[i]=(Yt1[i-2]+2*Yt1[i-1]+3*Yt1[i]+2*Yt1[i+1]+
+ Yt1[i+2])/9}
> Yt1s=as.vector(Yt1s) # smusso Yt1 con Mm 3*3
> 
> ns=length(Yt1s) # più corto di 4 elementi
> Yt1s # yt1 senza random; cioè Ciclo+Trend
 [1]            NA            NA -1.255983e-02 -6.694444e-03 -3.708333e-03
 [6] -4.989316e-03 -9.090812e-03 -1.287073e-02 -1.140385e-02 -8.274573e-03
[11] -5.727564e-03 -8.419872e-03 -9.424145e-03 -1.017735e-02 -4.337607e-03
[16] -1.027778e-03  5.958333e-03  8.455128e-03  1.157585e-02  6.129274e-03
[21] -2.070513e-03 -1.060791e-02 -1.194979e-02 -9.530983e-03 -5.979701e-03
[26] -3.955128e-03 -2.004274e-03 -2.777778e-05  3.902778e-03  1.089957e-02
[31]  1.874252e-02  2.179594e-02  1.809615e-02  1.216987e-02  1.027244e-02
[36]  1.208013e-02  1.424252e-02  1.326709e-02  1.032906e-02  9.861111e-03
[41]  1.273611e-02  1.806624e-02  1.824252e-02  1.524038e-02  1.026282e-02
[46]  7.836538e-03  7.827991e-03  9.913462e-03  1.368697e-02  1.393376e-02
[51]  1.377350e-02  1.130556e-02  1.384722e-02  1.478846e-02  1.779808e-02
[56]  1.546261e-02  1.159615e-02  5.836538e-03            NA            NA
> 
> par(ask=T)
> 
> Yt1s=Yt1s[3:(ns-2)]
> 
> RD=Yt1c-Yt1s # forse si tratta solo di random: il Ciclo?
> 
> #Riportiamo in una tabella 1 5 vettori dell'analisi su yt
> 
> #data <- data.frame(t,yt,ESAs,Yt1,RD)
> 
> # Facciamo i 5 correlogrammi dei vettori trovati: yt, ESAs, Yt1, Yt1s, RD
> coyt=acf(yt)
Aspetto per confermare cambio pagina...
> coyt


Autocorrelations of series ‘yt’, by lag

     0      1      2      3      4      5      6      7      8      9     10 
 1.000  0.541  0.395  0.223  0.302  0.221  0.330  0.281  0.150  0.102  0.150 
    11     12     13     14     15     16     17 
 0.248  0.255  0.308  0.197  0.099 -0.006  0.042 
> coESAs=acf(ESAs)
Aspetto per confermare cambio pagina...
> coESAs

Autocorrelations of series ‘ESAs’, by lag

     0      1      2      3      4      5      6      7      8      9     10 
 1.000  0.542  0.187 -0.111 -0.349 -0.460 -0.455 -0.423 -0.309 -0.102  0.146 
    11     12     13     14     15     16     17 
 0.433  0.800  0.434  0.150 -0.088 -0.276 -0.362 
> coYt1=acf(Yt1)
Aspetto per confermare cambio pagina...
> coYt1s=acf(Yt1s)
Aspetto per confermare cambio pagina...
> coYt1s

Autocorrelations of series ‘Yt1s’, by lag

    0     1     2     3     4     5     6     7     8     9    10    11    12 
1.000 0.908 0.757 0.610 0.519 0.457 0.396 0.326 0.271 0.256 0.277 0.317 0.335 
   13    14    15    16    17 
0.321 0.263 0.198 0.145 0.123 
> coRD=acf(RD)
Aspetto per confermare cambio pagina...
> coRD

Autocorrelations of series ‘RD’, by lag

     0      1      2      3      4      5      6      7      8      9     10 
 1.000 -0.308 -0.166 -0.187  0.222 -0.198  0.195  0.066 -0.089 -0.097  0.014 
    11     12     13     14     15     16     17 
 0.004 -0.029  0.147  0.043 -0.114 -0.071  0.046 
> # Interessante abbinare il correlogramma con il periodogramma: da fare.

L’EPILOGO

SEGUONO ULTERIORI APPROFONDIMENTI: 

APPLICAZIONE DI UNA REGRESSIONE LINEARE MULTIPLA (RLM) OPPORTUNA (variabili "dummy").
 
COME CALCOLARE LA F DI FISHER NELLE REGRESSIONI RLM.
 
COME CALCOLARE L'ERRORE STANDARD SUI COEFFICIENTI DI REGRESSIONE NELLA RML
 
COME SI APPLICA UNA REGRESSIONE LINEARE MULTIPLA PESATA (RLMP)
 
CHI VOLESSE ESERCITARSI SU ESEMPI RELATIVI AL CALCOLO MATRICIALE APPLICATO ALL'ANALISI DI DATI    SPERIMENTALI CERCARE IN QUESTO SITO "TIPS DI SCIENZA" (in particolare sui "conti" relativi alla   regressione lineare multipla (MLR). 
LO SCRITTO CHE SEGUE E' L'ULTIMA TRANCE DELL'ARTICOLO ORIGINALE CHE RIGUARDA GLI ULTERIORI        APPROFONDIMENTI,ELENCATI SOPRA, SCRITTO ANCORA DALLO SCRIVENTE, RIVISITATO E INTERPRETATO CON R   IN QUESTO POST. I RIFERIMENTI COME 1.1.2.2 ECC. RIGUARDANO RIMANDI A SUOI PARAGRAFI SPECIFICI. DATA LA NATURA A 'ZIBALDONE LEOPARDIANO DISPERSO' DI QUESTO LAVORO A GETTO ROBINSONIANO CI PROPONIAMO DI INSERIRE LA SECONDA PARTE DELL'ORIGINALE PRIMA DELLE APPENDICI. DOVREMMO SCANNERIZZARLO MEGLIO! 

11-L'EPILOGO

stat13_ridot
reg_MLR_blog0003

reg_MLR_blog0004

14

15

stat10001

stati0002

reg_MLR_blog0007

reg_MLR_blog0008

stat_reg_mlr_blog0001

i

durbin watson0008

i

GRAF. N.9

durbin watson0009

i

durbin watson0010

12 -APPENDICE1

APPENDICE1

Il correlogramma ed il test di Durbin-Watson. ([3], 949-953)

Ammettiamo che il lettore conosca il Coefficiente di Correlazione lineare di Pearson, ovvero date N paia di osservazioni su due variabili X  e Y, tale Coefficiente di Correlazione  fra esse e dato:

r =  Σi(Xi- Xm)*(Yi – Ym)/SQR[ Σi(Xi-Xm)^2 * Σi(Yi – Ym)]

Quest’idea viene trasferita alle serie storiche per vedere se osservazioni successive sono correlate.

Date N osservazioni X1, X2,………Xn , in una serie storica discreta possiamo considerare N-1 paia di osservazioni (X1,X2), (X2,X3), . . . ,(X(n-1),Xn), le cui prime osservazioni di ogni paio costituiscono la prima variabile e le seconde, la seconda variabile. Se si applica la formula precedente, dove Xi sarebbe Xt e Yi sarebbe Y(t+1), mentre Xm sarebbe la media della prima variabile (da t=1 a t=N-1) e Ym sarebbe la media della seconda variabile (da t=2 a t=N,  in ambedue i casi il numero degli elementi sarebbe N-1. Si otterrebbe una formula complessa con due medie diverse che vengono invece calcolate ambedue sulla serie originaria di numerosita N. Si usa cosi la formula approssimata scritta sotto, estesa al caso in cui si voglia trovare la correlazione tra serie di osservazioni a distanza H fra loro (slittate di h termini o di lag h)

I coefficienti di auto-correlazione rh , dove h=0,1,2…q e q è minore ad uguale a (N-2)/2, sono coefficienti di correlazione, calcolati per ogni valore di h, che misurano la concordanza o la discordanza tra i valori di una serie storica e quelli della stessa però slittati di h unità di tempo (lag h), consentendo di analizzare la sua struttura interna, ossia i legami fra i termini della stessa ([8] 18-20).

 rh = Σi[(y(t)-ym)(y(t+h)-ym)]/[(n-h)*Σj(y(t)-ym)^2/n)] dove i va da t=1…n-h e j va da t=1 … n

in alcuni testi viene abolito il fattore n/(n-h).

Tale formula presenta la semplificazione di poter   utilizzare una media unica per le Yt (quella dei dati originali), presupponendo una situazione stazionaria ([8] pag.19 e [2] pag.133). In particolare r0 = 1 (lag h =0, nessun slittamento) e gli altri rh assumono valori fra +1 (completa concordanza) e -1 (totale discordanza). Il correlogramma è la rappresentazione grafica dei coefficienti di auto-correlazione in funzione degli slittamenti (lags h) e permette di vedere se la serie storica possiede qualche regolarità interna.

CENNI DI LETTURA DEI CORRELOGRAMMI

-I coeff. di autocorr. di dati random hanno distribuzione campionaria che può essere approssimata da una curva gaussiana con media zero ed errore standard 1//N. Questo significa che il 95% di tutti i coeff. di autocorr. , calcolati da tutti i possibili campioni estratti, dovrebbero giacere entro un range specificato da: zero +/- 1.96 errori standard. I dati cioè della serie saranno da considerarsi random se questi coefficienti saranno entro i limiti:

-1.96 (1/√n)≤ rh  ≤ +1.96 (1/√n);       la fascia dell’errore:   +/- 2/√n

Per l’interpretazione dei correlogrammi vedere ([8] 20-25) da cui ricaviamo le seguenti informazioni.

– Una serie storica completamente casuale, cioè i cui successivi valori sono da considerarsi tutti indipendenti fra loro (non correlati), tutti i valori di rh  (eccetto r0 che è sempre +1, correlazione della serie con se stessa) oscilleranno accidentalmente intorno allo zero entro la fascia dell’errore. Se l’idea iniziale era questa in effetti  5 su 100 valori di rh potrebbero superare la fascia dell’errore e se plotto il correlogramma, 19 su 20 valori di rh potrebbero cadere all’interno della fascia, ma ci si potrebbe aspettare che uno possa eesere significativo sulla media. Insomma anche se la serie è casuale, ogni tanto verso lag più elevati potrebbero apparire picchi significativi. Se abbiamo a che fare con un numero elevato di coefficienti, potrebbero apparire risultati non aspettati. Questo rende il correlogramma uno strumento di investigazione incerto.

– I coeff. di autocorr. per i dati stazionari (assenza di TREND) vanno velocemente a zero dopo il 4° o 5° lag di tempo e  sono significativamente diversi da zero per i primi lag. Anche su correlogrammi,  ai lags più bassi, si possono notare coefficienti di autocorrelazione positivi rapidamente decrescenti e per i lag successivi  oscillazioni intorno allo zero. Ciò significa che esiste nella serie una persistenza di valori a breve termine, nel senso che se la grandezza in studio ha valore più elevato della media in un mese, lo sarà anche in uno o due mesi successivi e così per valori inferiori alla media.

-Se la serie storica presenta oscillazioni, anche il correlogramma tende ad assumere valori positivi e negativi, oscillando con lo stesso periodo della serie fino a smorzarsi ai lags più elevati. Se es. esiste un componente stagionale di periodo 12 mesi, nei dintorni del coefficiente di lag 12 ci sarà una zona significativamente diversa da zero.

– Nelle serie non stazionarie (presenza di TREND) i valori di rh non scendono velocemente a zero, ma si mantengono significativi per più valori del lag e solo se l’effetto del TREND è paragonabile alle altre eventuali relazioni presenti nei dati è possibile intuirle nel grafico (GRAFICO. N.2)

IL TEST DI DURBIN WATSON

Così la lettura dei correlogrammi talora può risultare ardua. Un modo veloce, affidabile e quantitativo per testare l’ipotesi che esista all’interno di una serie storica correlazione fra i suoi termini, cioè i termini non siano indipendenti, è somministrare alla serie il test di Durbin Watson ([8] 18-20), la cui statistica è espressa dalla formula:

d =∑ (ei – ei-1)2 /∑ ei2

La sommatoria al numeratore inizia dal 2° termine (i=2) e coinvolge ni termini . La statistica d varia da 0 a 4 e quando l’ipotesi nulla è vera (autocorrelazione assente) d dovrebbe essere vicino a 2. Il test permette di decidere di respingere l’ipotesi nulla, di accettarla o essere inconclusivo. Utilizzando la tabella opportuna   (allegata a queste note) si ottengono i valori critici di dl e du che servono per la decisione: all’interno dell’intervallo dl-du, la situazione è incerta; a sinistra di dl , si respinge l’ipotesi nulla. Vedremo in seguito come si calcola d con R e come si usa la tabella.

Il programma CORR, scritto in Qbasic, riportato in nota, permette il calcolo dei coefficienti di autocorrelazione con l’errore (un qualsiasi programma di grafica permetterà di costruire il correlogramma) e il calcolo della statistica di D. W.  Abbiamo già visto (vedere  programminosul correlogramma) come operare anche con il linguaggio R.

13 – APPENDICE2

APPENDICE2

Programmi in Qbasic e tabelle

PROGRAMMA CORR (coefficienti di autocorrelazione, il test di Durbin Watson, il test di Lin Mudholkar, Analisi spettrale per il periodogramma

programma_period0001

 

programma_period0002
programma_period0003
programma_period0004
durbin watson_blogpag60001

 

i

durbin watson0002

i

durbin watson_blogpag60001

durbin watson0003

i

durbin watson0004

i

durbin watson0005

i

durbin watson0006

i

durbin watson0007

i

stat_reg_mlr_blog0001

durbin watson0008

GRAF. N.9

durbin watson0009

i

durbin watson0010

programma_period0005

i

durbin watson0003

durbin watson0001

14 – APPENDICE3

APPENDIX3

TABELLE  DEI RISULTATI

reg_tabelle_blog0001

i

reg_tabelle_blog0003

i

reg_tabelle_blog0004

i

reg_tabelle_blog0005

15 – APPENDICE4

APPENDIX4

ANALISI, CON IL LINGUAGGIO R, DELLA SERIE STORICA TRIMESTRALE RIVISITATA E AMPLIATA CON PERIODOGRAMMI E RISULTATI

period_det_trim3

FIG.1-20001
FIG.2'-3
FIG.4-6
FIG.8-11
FIG.7


FIG.120001

DA CAMBIARE:

> rm(list=ls(all=TRUE))
> #SCRIPTS IN R
>
> library(graphics)
> library(tseries)

‘tseries’ version: 0.10-32

‘tseries’ is a package for time series analysis and computational
finance.

See ‘library(help=”tseries”)’ for details.

> library(stats)
> #library(UsingR)
> library(lattice)
> library(lmtest)
Carico il pacchetto richiesto: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

as.Date, as.Date.numeric

>
> w=c(0.033,0.043,0.051,0.059,0.061,0.063,0.053,0.036,0.046,0.056,0.063,0.048,0.053,0.043,
+ 0.066,0.053,0.082,0.06,0.08,0.076,0.056,0.036,0.05,0.053,0.056,0.058,0.061,0.063,0.065,
+ 0.068,0.0815,0.095,0.079,0.063,0.069,0.074,
+ 0.08,0.0765,0.073,0.0695,0.066,0.093,0.083,
+ 0.073,0.063,0.074,0.067,0.06,0.086,0.08,0.073,0.067,0.089,0.064,0.087,0.079,0.07,0.065,0.06,.063)
>
> par(ask=T)
>
> par(mfrow=c(1,3))
>
> trim=matrix(w,ncol=3,byrow=T)
>
>
> medietrim=rowMeans(trim)
>
> medietrim
[1] 0.04233333 0.06100000 0.04500000 0.05566667 0.05400000 0.06500000
[7] 0.07066667 0.04633333 0.05833333 0.06533333 0.08516667 0.06866667
[13] 0.07650000 0.07616667 0.07300000 0.06700000 0.07966667 0.07333333
[19] 0.07866667 0.06266667
>
> # FIG.1
> ts.plot(medietrim,type=”l”,main=”FIG.1″) #finchè non lo sostituisco posso usare abline
Aspetto per confermare cambio pagina…
>
> w1=c(1:20)
> regtrim=lm(medietrim~w1)
> abline(regtrim)
>
> summary(regtrim)

Call:
lm(formula = medietrim ~ w1)

Residuals:
Min 1Q Median 3Q Max
-0.015979 -0.005078 0.001069 0.006031 0.019235

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0503921 0.0041790 12.058 4.67e-10 ***
w1 0.0014127 0.0003489 4.049 0.000752 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.008996 on 18 degrees of freedom
Multiple R-squared: 0.4767, Adjusted R-squared: 0.4476
F-statistic: 16.4 on 1 and 18 DF, p-value: 0.0007524

>
> val_pred_w=predict(regtrim) #calcolo i 20 valori predetti dalla prima regressione
> length(val_pred_w)
[1] 20
>
>
> detrend_trim=medietrim-val_pred_w
> detrend_trim
1 2 3 4 5
-0.0094714286 0.0077825815 -0.0096300752 -0.0003760652 -0.0034553885
6 7 8 9 10
0.0061319549 0.0103859649 -0.0153600251 -0.0047726817 0.0008146617
11 12 13 14 15
0.0192353383 0.0013226817 0.0077433584 0.0059973684 0.0014180451
16 17 18 19 20
-0.0059946115 0.0052593985 -0.0024865915 0.0014340852 -0.0159785714
>
> #FIG.2
> plot(detrend_trim,type=”l”, main=”FIG.2″)
>
>
> detrend_trim
1 2 3 4 5
-0.0094714286 0.0077825815 -0.0096300752 -0.0003760652 -0.0034553885
6 7 8 9 10
0.0061319549 0.0103859649 -0.0153600251 -0.0047726817 0.0008146617
11 12 13 14 15
0.0192353383 0.0013226817 0.0077433584 0.0059973684 0.0014180451
16 17 18 19 20
-0.0059946115 0.0052593985 -0.0024865915 0.0014340852 -0.0159785714
>
> trim1=matrix(detrend_trim,ncol=4,byrow=T)
> medietrim1=colMeans(trim1)
> medietrim1_5anni=rep(medietrim1,5)
>
> #FIG.3
> plot(medietrim1_5anni,type=”l”,main=”FIG.3″)
>
> medietrim1_5anni
[1] -0.0009393484 0.0036479950 0.0045686717 -0.0072773183 -0.0009393484
[6] 0.0036479950 0.0045686717 -0.0072773183 -0.0009393484 0.0036479950
[11] 0.0045686717 -0.0072773183 -0.0009393484 0.0036479950 0.0045686717
[16] -0.0072773183 -0.0009393484 0.0036479950 0.0045686717 -0.0072773183
>
> par(mfrow=c(2,2))
>
> #FIG.4
> acf(medietrim1_5anni,main=”FIG.4″)
Aspetto per confermare cambio pagina…
>
> valAdjtrim=medietrim-medietrim1_5anni #trend_ random
>
>
> fitadj_trim=lm(valAdjtrim~w1)
>
> fitadj_trim

Call:
lm(formula = valAdjtrim ~ w1)

Coefficients:
(Intercept) w1
0.049678 0.001481

>
> summary(fitadj_trim)

Call:
lm(formula = valAdjtrim ~ w1)

Residuals:
Min 1Q Median 3Q Max
-0.0136886 -0.0044597 -0.0006167 0.0058313 0.0146327

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.049678 0.003486 14.251 3.03e-11 ***
w1 0.001481 0.000291 5.088 7.67e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.007504 on 18 degrees of freedom
Multiple R-squared: 0.5899, Adjusted R-squared: 0.5671
F-statistic: 25.89 on 1 and 18 DF, p-value: 7.671e-05

>
> #FIG.5
> plot(valAdjtrim,type=”l”,main=”FIG.5″)
> abline(fitadj_trim)
>
> #ANALISI RESIDUI
>
>
> dwtest(fitadj_trim, alternative=”two.sided”)

Durbin-Watson test

data: fitadj_trim
DW = 1.9024, p-value = 0.6301
alternative hypothesis: true autocorrelation is not 0

> #forse potremo interpolare l’elemento 11
>
> #FIG.6
> res=resid(fitadj_trim)
> plot(res,type=”l”, main=”FIG.6″)
>
> #FIG.7
> acf(res, main=”FIG.7″)
>
> par(mfrow=c(2,2))
> #FIG.8-12
> plot(fitadj_trim)
Aspetto per confermare cambio pagina…
>
>
>

Far girare il precedente programma. Applicare a detrend_trim il periodogramma  e trasformare in formula analitica l’oscillazione o le ascillazioni e provare a toglierla(toglierle) da medietrim (a da detrend _trim) per vedere se spariscono dal loro periodogramma i picchi rilevanti. E’ un buon metodo incrociato di testare il Periodogramma rivisitato.

16 – APPENDICE5

APPENDIX5

IL SENSO COMUNE, L’INSEGNAMENTO SCIENTIFICO ED I SAPERI PREPOSTI ALLE SCELTE – UN PRIMO APPROCCIO OPERATIVO ALL’ANALISI DI FOURIER COL SUPPORTO DEL COMPUTER  del dott. Piero Pistoia

0 – LA PREMESSA

MATH_FOURIER_PREMESSA1- Piero Pistoia

BIBLIOGRAFIA DELLA PREMESSA

four_bibl0001

1 – L’ARTICOLO GUIDA

L’articolo sull’analisi di fourier su dati reali e simulati col Mathematica di Wolfram 4.2                 dott. Piero Pistoia

artfouart-math in pdf

Seguirà la diretta trascrizione

 

 2 – IL PROGRAMMA CON ESERCITAZIONI

Analisi di serie storiche reali e simulate dott. Piero Pistoia

ATTENZIONE! le linee di programma attive non sono incluse fra apici. Cambiando opportunamente le inclusioni di linee nei diversi segmenti del programma, si possono fa girare i diversi esempi, e proporne di nuovi.

 

A0-Esempio N.0

ANALISI DELL’ESEMPIO N° 0

Le linee attive di questo esempio sono state evidenziate

Si trascriva manualmente o con copia/incolla i seguenti scripts  sulla consolle del MATHEMATICA DI WOLFRAM (vers. non superiore alla 6.0); si evidenzi e si batta shift-enter: si otterranno i risultati ed i grafici non inseriti.

"Si forniscono diversi vettori di dati sperimentali di esempio immessi 
    direttamente o tramite Table; per renderli attivi basta eliminare agli 
    estremi le virgolette.Se l'analisi diventa più complessa rispetto ad una 
ricerca di armoniche di Fourier a confronto con la serie iniziale, si può 
utilizzare il SEGMENTO DELLE REGRESSIONI (lineare e quadratica) per ottenere 
yg2 ed il SEGMENTO DELLE ARMONICHE RILEVANTI (yg3 e yg4) individuate in una 
prova precedente. Abbiamo da sostituire il nome di qualche vettore e aprire o 
chiudere (cancellando o inserendo virgolette) istruzioni nei diversi segmenti 
del programma secondo ciò che vogliamo fare. In yg1 c'è il vettore dati 
iniziale. In yg2 c'è il vettore detrendizzato. In yg3, quello delle armoniche 
rilevanti. In v, il vettore di Fourier fornito dall'analisi. Altri segmenti 
su cui intervenire: IL GRAFICO ygf dove va inserita la variabile (ygi) da 
confrontare con Fourier (v); il segmento di IMPOSIZIONE NUMERO ARMONICHE m; 
il segmento di SCELTA VARIABILI DA SOTTOPORRE A FOURIER (ygi); il segmento 
per cambiare la variabile nell'ERRORE STANDARD. In ogni esempio si accenna 
alle modifiche specifiche da apportare ai diversi segmenti";


"ESEMPIO N.0";
"Esempio illustrativo riportato alle pagine 3-4 dell'art.: imporre il numero \
di armoniche m=1 oppure 2 nel segmento relativo e confrontare il grafico ygf \
che gestisce la variabile yg1 dei dati seguenti, con quello di v (ygf1); \
controllare infine i risultati con i dati del testo";

yt=N[{103.585, 99.768, 97.968, 99.725, 101.379, 99.595, 96.376, 96.469, \
100.693, 104.443}]

"ESEMPIO N.1"
"Si sottopongono a Fourier i dati tabellati seguenti(yg1). Si confrontano yg1 \
(tramite ygf) e v di Fourier(tramite ygf1); calcolo automatico di m";
 "yt=N[Table[100+4 Sin[2 t/21 2 Pi-Pi/2]+3 Sin[4 t/21 2 Pi+0]+6 Sin[5 t/21 2 \
Pi-1.745], {t,21}]]"

"Si detrendizza yg1 seguente ottenendo yg2 (si liberino le istruzioni del \
segmento TREND), che poniamo come variabile in ygf (si inserisca nella sua \
espressione); si sottopone yg2 a Fourier (v) nel segmento "SCELTA VETTORE \
DATI"; confrontiamo ygf1 (grafico di v) e ygf; inserire variabile yg2 \
nell'espressione errore"  
"yt=N[Table[100+4 Sin[2 t/21 2 Pi-Pi/2]+3 Sin[4 t/21 2 Pi+0]+6 Sin[5 t/21 2 \
Pi-1.745]+0.5 t + (Random[]-1/2),{t,21}]]";

"ESEMPIO N.2";
"Si utilizza il vettore originale yg1 e si confronta con v di Fourier (ygf \
con ygf1), come nell'esempio N.1, prima parte; m automatico. Esempio \
interessante per controllare come Fourier legge i dati"
"yt=Table[N[Sin[2 Pi 30 t/256]+.05t+(Random[]-1/2)],{t,256}]"

"ESEMPIO N.3";
"Come l'esempio N.2. Ci insegna come Fourier <sente> i coseni"
"yt=N[Table[100+4 Cos[2 t/21 2 Pi-Pi/2]+3 Cos[4 t/21 2 Pi+0]+6 Cos[5 t/21 2 \
Pi-1.745],{t,21}]]";

"ESEMPIO N.4";
"Come il N.2. Ci assicura del funzionamento del programma"
"yt= N[Table[100+3 Sin[2 Pi 2 t/21+ Pi/2],{t,1,21}]]";
"I dati successivi sono stati campionati da Makridakis combinando l'esempio \
precedente ed un random (pag. 402, [])";
"yt={106.578,92.597,99.899,97.132,93.121,95.081,102.807,106.944,100.443,95.\
546,103.836,107.576,104.658,91.562,91.661,97.984,111.195,100.127,94.815,105.\
009,110.425}";

"ESEMPIO N.5"
"Prima parte.
Si detrendizza il vettore dati yg1, liberando, nel segmento TREND, il calcolo \
dei coefficienti B0 e B1 della retta interpolante, trovando yg2 che \
inseriremo in ygf nel segmento GRAFICO DA CONFRONTARE CON FOURIER. Calcolo \
automatico di m. Nel segmento SCELTA VETTORE PER FOURIER, poniamo yg2 in yt e \
nella formula dell'ERRORE STANDARD. Si fa girare il programma una prima volta \
e si osservano quali sono le armoniche rilevanti. Di esse si ricopiano i  \
parametri trovati (numero armonica, ampiezza, fase), con i quali  si \
tabellano le 4 armoniche rilevanti, trascrivendole nel segmento ARMONICHE \
RILEVANTI.
Seconda parte.
Nel segmento ARMONICHE RILEVANTI si tabellano le espressioni di queste 4 \
armoniche, si sommano i relativi vettori in yg3. Si liberano queste 4 \
armoniche e il loro vettore somma yg3. Si pone poi la variabile yg3 in ygf \
per confrontare yg3 con v (risultato di Fourier su yg2). Calcolo automatico \
di m. Si sceglie per Fourier la variabile yt=yg2. Nel segmento dell'ERRORE si \
pone yg3 e si rilancia il programma una seconda volta. E' un modo per \
cogliere le uniformità periodiche all'interno di dati storici"

"yt=N[{0.0330,0.0430,.0510,.0590,.0610,.0630,.053,.036,.0460,.0560,.0630,.\
0480,.0530,.0430,.0660,.053,.0820,.0600,.0800,.0760,.0560,
.0360,.0500,.053,.0560,.0580,.0610,.0630,.0650,.0680,.0815,.095,
.0790,.0630,.0690,.0740,.0800,.0765,.0730,.0695,.0660,.0930,.0830,
.0730,.0630,.0740,.0670,.06,.0860,.0800,.0730,.0670,.0890,.0640,
.0870,.079,.0700,.0650,.0600,.0630}]"

"Le successive righe sempre attive"
yg1=yt
n=Length[yt];

"SEGMENTO DELLE REGRESSIONI"

"f[x_]:=Fit[yt,{1,x,x^2},x]"
"f[x_]:=Fit[yt,{1,x},x]"

"yt1=N[Table[f[t],{t,60}]]?"
"La precedente istruzione dà problemi"

"Trovo l'ordinata all'origine e la pendenza"
"B0=f[x]/.x\[Rule]0"
"f1=f[x]/.x\[Rule]1"
"B1=f1-B0"
"B2=B0+B1 t"

"Un secondo modo di trovare B0 e B1";

"xt=Table[i, {i, 1, n}]";
"a=xt yt";
"Sxy=Apply[Plus, xt yt]";
"Sx=Apply[Plus, xt]";
"Sy=Apply[Plus, yt]";
"xq=xt^2";
"Sxq=Apply[Plus, xq]";
"yq=yt^2";
"qSx=Sx^2";
"B1=(n Sxy-Sx Sy)/(n Sxq-qSx)";
"B0=Sy/n-B1 Sx/n";
"B2=B0+B1 t";

"Tabello la retta"

"yt1=N[Table[B2,{t,n}]]"
"yt1=Flatten[yt1]"
"In yt1 ci sono i dati relativi alla retta di regressione"
"In yg2 c'è il vettore detrendizzato dei dati iniziali"
"yg2=yt-yt1"

"SEGMENTO DELLE ARMONICHE RILEVANTI"

"y4=Table[N[.004(Sin[.1333 Pi t+6.266])],{t,60}]";
"y5=Table[N[.007(Sin[.1667 Pi t+4.782])],{t,60}]";
"y8=Table[N[.004(Sin[.2667 Pi t+4.712])],{t,60}]";
"y9=Table[N[.004(Sin[.3000 Pi t+3.770])],{t,60}]";

"yg3=N[y4+y5+y8+y9]";

"In yg3 c'è il vettore dati di tutte le armoniche considerate rilevanti da \
precedente analisi. Se il programma passa da questo punto,
    ha senso misurare per es. la differenza con il vettore di tutte le \
armoniche di Fourier sui dati detrendizzati yg2";

"yg4= N[yg3+yt1]";

"In yg4 c'è il vettore di tutte le componenti considerate rilevanti compreso \
il trend. Ha senso un confronto fra i dati iniziali Yg1 o v (vettore di \
Fourier) e Yg4 "

" IL GRAFICO ygf E' DA CONFRONTARE CON QUELLO DI FOURIER ygf1"
" La variabile nel ListPlot successivo rappresenta il vettore da confrontare \
con la combinazione di armoniche di Fourier applicato ad un vettore dati. yg \
rappresenta il grafico di tale vettore"
"In ygi (i=1,2...) ci va il vettore da confrontare con v"

ygf=ListPlot[yg1,PlotJoined\[Rule]True,PlotRange\[Rule]Automatic,
    				   GridLines\[Rule]{Automatic,Automatic},
    AxesLabel\[Rule]{"Tempo","Dati \
(unità)"},PlotLabel\[Rule]FontForm["DOMINIO  DEL TEMPO",{"Times",12}]]

"CALCOLO AUTOMATICO DEL NUMERO ARMONICHE"
ny=Length[yg1]
n=ny;m=Mod[n,2]
If[m>0,  m=(n-1)/2, m=n/2-1]
"IMPOSIZIONE MANUALE NUMERO ARMONICHE"
m=1
"m=2"

"SCELTA VETTORE DATI DA SOTTOPORRE A FOURIER"
"IN yt CI SONO I DATI CHE VOGLIO ANALIZZARE CON FOURIER E L'ANALISI E' POSTA \
IN v"
"Se voglio analizzare con Fourier i dati iniziali:"
yt=yg1
"Se voglio analizzare i dati detrendizzati:"
"yt=yg2"
"Se voglio analizzare i dati relativi alle armoniche considerate rilevanti:"
"yt=yg3"
"Se voglio analizzare i dati di tutte le componenti rilevanti:"
"yt=yg4"

"VALORI DEL PARAMETRO ak="

"Calcolo gli ak con il comando Sum, sommando cioè gli n prodotti yt * la \
funzione coseno, per t=1 a n; faccio questo per ogni valore di k (da k=0 a \
n/2)tramite Table"

a1=Table [Sum[yt[[t]] Cos[2 Pi k t/n],{t,1,n}],{k,0,m}];
a=2*a1/n;

"Divido per due il primo elemento, per ottenere ao=media; Sopprimo poi il \
primo elemento"
a0=a[[1]]/2
a=Delete[a,1]
a=Chop[%]

"VALORI DEL PARAMETRO bk="

"Calcolo ora bk con la funzione seno con lo stesso procedimento di ak"
b1=Table[Sum[yt[[t]] Sin[2 Pi i t/n],{t,1,n}],{i,1,m}];
b=2 b1/n
b=Chop[%]
"Mentre ao/2 rappresenta la media, bo è sempre nullo"
b0=0

"AMPIEZZE ="

"Con ak e bk calcolo le ampiezze e le fasi dell'f(t) iniziale; Individuo il 
vettore dei numeri da mettere sulle ascisse nel dominio della frequenza 
(i/n o n/i) e con i vettori xi e yi 
costruisco la lista {xi,yi}; disegno infine i plots"
ro=Sqrt[a^2+b^2]
ro=N[Chop[%]]
ro=Flatten[ro]


Theta={}
i=1
While[i<m+1,
    f2=Abs[a[[i]]/b[[i]]];
    f2=180/Pi ArcTan[f2];
    If[b[[i]]>0 && a[[i]]>0 , Theta=N[Append[Theta,f2]]];
    If[b[[i]]<0 && a[[i]]>0, Theta=N[Append[Theta,180-f2]]];
    If[b[[i]]<0 && a[[i]]<0, Theta=N[Append[Theta,180+f2]]];If[b[[i]]>0 && a[[
    i]]<0, Theta=N[Append[Theta,360-f2]]];
    If [(a[[i]]==0 && b[[i]]==0),Theta=N[Append[Theta,0]]]; 
     If[((
    b[[i]]<0 || b[[i]]>0) && a[[i]]\[Equal]0),Theta=N[Append[Theta,0]]];
    
     If[b[[i]]\[Equal]0 && a[[i]]>0 ,Theta=N[Append[Theta,90]]];
    If[b[[i]]\[Equal]0 && a[[i]]<0, Theta=N[Append[Theta,-90+360]]]; i++];

"FASE ="

Theta=Theta

"Theta=N[ArcTan[a,b]*180/Pi]"

"RISULTATI DI FOURIER"
v=Table[a0+Sum[(a[[k]] Cos[2 Pi k t/n]+b[[k]] Sin[2Pi  k \
t/n]),{k,1,m}],{t,1,n}];

"GRAFICO RISULTATI DI FOURIER (ygf1)"
ygf1=ListPlot[v,PlotJoined\[Rule]False,GridLines\[Rule]{Automatic,Automatic},
    PlotLabel\[Rule]FontForm["GRAFICI  DI CONTROLLO",{"Times",12}]]

"CONFRONTO"
ygf2=Show[ygf,ygf1,PlotRange\[Rule]{Automatic,Automatic}]

"Calcolo l'ERRORE STANDARD DELLA STIMA"

ESS=Sqrt[Apply[Plus,(yg1-v)^2]/(n-2)]

"x=N[Table[i,{i,1,m}]]";
"c1=x";
Length[x];
Length[ro];
"For[i=1,i<m,i++,j=i*2;c=c1;yi=ro[[i]];
  c=Insert[c,yi,j];c1=c]";
"d1=Partition[c,2]";
Needs["Graphics`Graphics`"]
BarChart[ro]
ListPlot[ro, PlotJoined\[Rule]True,PlotRange\[Rule]All, 
  GridLines\[Rule]{Automatic,Automatic},AxesOrigin\[Rule]{0,
          0},AxesLabel\[Rule]{"Cicli in n dati", "Ampiezza \
"},PlotLabel\[Rule]FontForm["DOMINIO  DELLA FREQUENZA",{"Times",12}]]
"c1=x";
"For[i=1, i<m,i++,j=i*2;c=c1;yi=Theta[[i]];
  c=Insert[c,yi,j];c1=c]";
"d2=Partition[c,2]";
ListPlot[Theta, PlotJoined\[Rule]True,PlotRange\[Rule]All, \
GridLines\[Rule]{Automatic,Automatic},AxesOrigin\[Rule]{0,0},
  AxesLabel\[Rule]{"Frequenza","Fase"}]

———————————————————————————–

A1-Esempio N.1

————————————————————————

A2-Esempio N.2

math_es_20001

math_es_20002

math_es_20003

math_es_20004



math_es_20005

math_es_20006

math_es_20007

RISULTATI ESEMPIO 2

math_es_20008
math_es_20009


math_es_20010

math_es_20011

math_es_130001
math_es_20011
math_es_130001
math_es_150001



math_es_20016

A5-Esempio N.5

 

Serie detrendizzata delle concentrazioni As 

ANALISI DEI DATI REALI DELL’ESEMPIO N° 5

priodogramma0001

L’IDEA E’ QUESTA:

– SUI SESSANTA DATI DELLA CONCENTRAZIONE ARSENICO (yt, GRAF. N.1) IN ALCUNE SORGENTI DELLA CARLINA (PROV. SIENA), SI FA UNA REGRESSIONE LINEARE ED I SUOI  60 VALORI PREDETTI  SI SOTTRAGGONO DA yt, OTTENENDO LA SERIE DETRENDIZZATA.

– QUEST’ULTIMA SI SOTTOPONE AL PERIODOGRAMMA CHE, IN USCITA, PERMETTE DI CALCOLARE LE SUE COMPONENTI ARMONICHE.

– SOMMANDO LE COMPONENTI ARMONICHE RILEVANTI PIU’ I VALORI DEL TREND E SOTTRAENDO TALE SOMMA DALLA SERIE ORIGINALE yt, SI OTTERRA’ LA “STIMA DELL’ERRORE STANDARD” CHE DA’ UN’IDEA DELLA BONTA’ DEL PROCESSO.

Si trascriva manualmente i seguenti scripts  sulla consolle del MATHEMATICA DI WOLFRAM (vers. non superiore alla 6.0); si evidenzi e si batta shift-enter: si otterranno i risultati e grafici riportati alla fine di questo programma (si noti in particolare il grafico ampiezza-numero armoniche eseguito sulla serie detrendizzata, dove è evidente il picco all’armonica n°5)

Period_con_math0001

Period_con_math0002

period_con_math10001

period_con_math10002

period_con_math10003

——————————————————————–

RISULTATI DEL PROGRAMMA ESEMPIO N.5 (conc. As detrend)

Period_con_math20001

Period_con_math20002

Period_con_math20003x

Period_con_math20004

Period_con_math20005x

Period_con_math20006

Period_con_math20007x

A4-Esempio N.4

Mathematica0001

ANALISI DELL’ESEMPIO N° 4 CON RISULTATI E GRAFICI (DATI SIMULATI)

Mathematica0002

Mathematica0003

Mathematica0004 - Copia

Mathematica0005 - Copia

Mathematica0006

Mathematica10001

Mathematica10002

Mathematica10003

Mathematica10004

Mathematica20001 - Copia

Mathematica20002 - Copia

Mathematica20003

Mathematica20004

A6-Esempio N.6

Oscillazione mensile ozono a Montecerboli (Pomarance,Pi); 2007-2011

fouroz20001

fouroz20002

fouroz20004

fouroz20006

fouroz20005

fouroz20006

fouroz20007
fouroz2008
fouroz2009

RISULTATI GRAFICI OZONO

fouroz20010

———————————————————————————-

ESEMPIO N° 5 CHE USA LE ARMONICHE RILEVANTI MESSE IN FORMULA IN UNA PRE-PROVA

FOUART-articolo-Piero Pistoia-in pdf

—————————————

four_art1 da correggere

four_art2

four_art3

four_art4

four_art5

four_art6

four_art7

four_art8

four_art9

four_art10

four_art11

four_art12

four_art13

four_art14

four_art15

four_art16

four_art17

four_art18

fuor_art19 da correggere

ANCORA UNA RIFORMA DELLA SCUOLA: MONDO SCOLASTICO E MONDO DEL LAVORO, UN RAPPORTO DIFFICILE del dott. Piero Pistoia; post aperto

CURRICULUM DI PIERO PISTOIA
 
piero-pistoia-curriculumok (0)
 
 
Articolo trasferito da LA RICERCA, Loescher Editore Torino, 15 ottobre 1987
Questo articolo è piaciuto al blog Agenda19892010 come comunicato il 31-5-2015 da WordPress all’Amministratore con una e-mail 

PREMESSA

Nel lontano 1987 scrivevamo su questo problema, già ritenuto urgente, e dopo quasi trent’anni siamo punto e a capo! In questo lontano articolo si prospettano possibili larvate ipotesi di soluzione da mettere alla prova, naturalmente mai attivate, anche perché, nelle sedi opportune, non fu  certamente letto e figuriamoci se verrà letto oggi. In queste  sedi comunque. a nostro avviso, sembra scarseggiare l’intuito necessario 1) per prevedere nel futuro ( ma mancano anche i dati necessari su cui basarci!), e 2) per strutturare un conseguente progetto che sia efficace sui due versanti (scuola e  lavoro), al fine di realizzare l’obbiettivo. Non si riesce ad imparare niente dalla storia, perché non siamo riusciti a ‘misurare’ (non abbiamo dati statistici rilevanti!) gli svariati interventi robinsoniani  fatti nel passato, per poi aggiustare il tiro nell’andare. Sempre a nostro avviso, infatti, ci siamo preoccupati poco di raccogliere ed analizzare dati statistici sui numerosi progetti educativi tentative messi in atto nel corso degli anni, per poter usare i rilevanti nelle previsioni. Mi verrebbe da pensare che anche alla prossima riforma saremo punto e a capo, vista la tendenza, focalizzata dai quotidiani, verso il lavorare di più rispetto al lavorare meglio! Sulla base di queste considerazioni sono indotto a ritenere  che l’articolo  da me scritto nel lontano 1987, sia oggi più attuale di ieri, a riprova del fatto che in quasi trentanni si è mosso quasi niente!

La premessa è in corso di correzione e modifica.

 

mondo_scuola-lavoro0001

scuolalavoro0001mondo scuola-lavoro0003scuola-lavoro0001
mondo scuola-lavoro0005

TRE MODI DI COMUNICAZIONE CULTURALE del dott. Piero Pistoia, post aperto

Se vuoi ingrandire lo scritto cliccaci sopra

CURRICULUM DI PIERO PISTOIA:

piero-pistoia-curriculumok (#)

POSSIBILI ESPERIMENTI DI COMUNICAZIONE CULTURALE

di Piero Pistoia

comunicazione culturale0002(Piero Pistoia)

APPUNTI DI BOTANICA: LE CAMOMILLE DELLA VAL DI CECINA ED ALTRE PIANTE OFFICINALI E MOLTO ALTRO; del dott. Piero Pistoia; post aperto

CURRICULUM DI PIERO PISTOIA

cliccare su:

piero-pistoia-curriculumok (#)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 

 

ART. IN COSTRUZIONE DA TEMPO! LA VIA SI FA CON L’ANDARE E NON SEMPRE LA VIA FACILE E’ LA VERA VIA; NOI  FACCIAMO AL MEGLIO QUELLO CHE POSSIAMO, SE SBAGLIAMO SI CORREGGE!camomille0003

PRESENTAZIONE DELL’ARTICOLO

 

La presente nota, che si inserisce in un discorso a più ampio raggio di riscoperta e rivalutazione dell’ambiente naturale, vuole focalizzare alcuni problemi emergenti nelle interazioni folclore-cultura simbolica, extrascolastico-scolastico, cultura di massa-cultura disciplinare, aprendo in prospettiva possibilità per una comunicazione culturale efficace. Essa sottolinea, attraverso la ricerca e la raccolta di alcune piante officinali, si possa non solo ritrovare il gusto della tradizione legata al ciclo delle epoche e delle stagioni, ma anche recuperarla attraverso la mediazione della cultura strutturata ( si impara consapevolmente a conoscere perchè quella pianta è diversa dalle altre, perchè possiede quelle proprietà, perchè non si trova in tutti i terreni…). In questo modo la disciplina scolastica potrà uscire dall’ambito ristretto dell’aula per entrare nella casa, nel bar, nella piazza, fornendo modelli di interpretazione e spiegazione e quindi suscitando interessi diversi da quelli spesso alienanti dell’industria culturale.

La riscoperta del folclore e della tradizione, se mediate attraverso il filtro qualificante delle strutture disciplinari, non solo innesca il processo di emancipazione, ma offre, da una parte, l’oppurtunità di un impiego più proficuo del tempo libero, specialmente da parte dei giovani e dall’altra, la consapevolezza della necessità di un rispetto senza condizioni dell’ambiente in tutte le sue componenti, animate ed inanimate.

Infine, in una piccola comunità come la nostra, un discorso di questo tipo ampliato e reso continuativo (dalla camomilla ed altre piante officinali ai funghi, dal comportamento alla conoscenza delle abitudini di certi tipi di selvaggina, ecc.) potrebbe rappresentare forse anche un’occasione per avvicinare la saggezza dell’anziano con i suoi modelli di interpretazione del mondo, con quelli forse più mediati del giovane scolasticizzato, favorendo una maggiore comprensione fra i due mondi.

 

INTRODUZIONE

Alcune piante officinali vengono ancora raccolte nella Val di Cecina specialmente nelle campagne, anche se con frequenza minore rispetto a qualche anno fa, secondo certe modalità e certi riti che rimandano ad una cultura-folclore tramandata oralmente, ma non trascurabile per qualsiasi discorso di comunicazione culturale-educativa.

L’articolo si pone come tentativo di una riscoperta, da una parte, di certe usanze sempre più disconosciute dalle nuove generazioni e dall’altra, di un inserimento nella cultura di base-folclore per aprirla ad un apporto sempre più simbolico.

Tutti conoscono la “camomilla”. Certamente ognuno almeno una volta ne ha bevuto l’infuso (1) e nei giorni vicini a San Giovanni, 24 giugno, (almeno qualche anno fa quando il clima era più stabile) molti lasciavano il paese per le stazioni di raccolta che ognuno conosceva da sempre, anche per tradizione. Era proprio il giorno di San Giovanni quella della raccolta delle piante officinali. Nei tempi ancora più lontani il 24 giugno maghi e streghe di riversavano nella campagne a mezzogiorno astronomico a raccogliere l’iperico (Iperycum perforatum) e le altre erbe “magiche”. Ma le antiche usanze hanno una loro ragione scientifica: proprio in quel giorno  forse la radiazione solare in media è più intensa alle nostre latitudini, se qualche giorno prima, il 21 giugno (solstizio d’estate), i raggi del sole incidevano perpendicolarmente  a 23,5° di latitudine nord   (Tropico del cancro) e lo sfasamento temporale è dovuto forse all’inerzia al trasferimento di calore all’ambiente. A mezzogiorno, perchè la sintesi clorofilliana (appendix 1) è al massimo. Altri consigliano invece la raccolta delle erbe al sorgere del sole, quando certamente i processi di ossido_riduzione (appendix 1) sono meno intensi, e la pianta è forse “meno viva”. Sembra anche che non si debbano recidere le erbe con oggetti metallici, forse per possibili reazioni chimiche negative fra metallo e succhi vegetali; si consiglia così uno strumento di osso o di plastica inerte. Se è vera la nostra ipotesi però potrebbe servire bene  anche un paio di forbici o coltello di buon acciaio inox per sezionare.  Ma al di là di un discorso sul rispetto che si deve portare a qualsiasi organismo vivente, non si deve escludere però, nell’accumulo dei principi attivi nella pianta, anche uno sfasamento nel tempo, variabile da pianta a pianta, a) rispetto al mezzogiorna astronomico 2 ) rispetto alla fioritura, tenendo conto che una fase del processo clorofilliano avviene al buio e la sintesi dipende essenzialmente dalla zona verde della pianta (appendix 1).

Ma torniamo alla camomilla, cioè alle “camomille”, perchè con la parola camomilla si indicano piante di diverso tipo sia a livello botanico: camomilla comune (Matricaria camomilla), camomilla romana ecc., sia a livello industriale (le varie specie che si prestano a sofisticare la camomilla vera). Molti parenti insomma della “vera” camomilla, dalle “margherite” ai “crisantemi”, hanno avuto il nome di camomilla s.l., aprendo possibilità a falsificazioni e sofisticazioni, da una parte, e a convinzioni errate dall’altra. Si tratta come vedremo  di alcune specie del genere Anthemis (Anthemis cotula, Anthemis arvensisi) con foglie frastagliate finemente fino a diventare simili a quelle della camomilla vera, ma anche di specie, che sembra non abbiano nulla a che spartire con la camomilla neppure nell’aspetto esteriore, appartenenti al genere Chrysantemum (C. leucantemum, C. parthenium, C. corymbosum), le cui foglie sono meno settate o addirittura intere. anche nelle nostre zone anche in qualche modo si riflette questa polisemia del nome: si raccolgono infatti almeno due tipi di piante col nome “camomilla” (la “piccola” e la “grande” camomilla). Ma veniamo a precisare concetti e problemi.

 

TAVOLA SINOTTICA RELATIVA ALL’ARTICOLO

 
tavola_sinottica_camomille_1tavola-sinottica_camomille_2

tavola_sinottica_camomille_3
tavola_sinottica_camomille_4

POSIZIONE SISTEMATICA DELLE “CAMOMILLE”

 

Per capire l’inserimento della camomilla i una strutura di piante più o meno imparentate, è necessario parlare del fiore in generale e di alcune infiorescenze in particolare: quella a capolino e quella a corimbo.

IL FIORE, IL CAPOLINO ED IL CORIMBO

Il fiore delle piante superiori (Fanerogame Angiosperme, cioè piante a fiori i cui ovoli sono protetti in ovari) è una struttura (fig. 1, della T. sinottica)) che deriva da foglie che hanno subito particolari trasformazioni nel corso dell’evoluzione, divenendo completamente diverse da quelle poste sul fusto, formando pezzi come a) lo stame che alla sommità porta l’antera, dove si forma il polline, che si configura come un organismo maschile pluricellulare (forse analogo al fuco delle api), che darà poi luogo al gamete maschile, detto anterozoo, analogo allo spermatozoo degli animali superiori, b) il pistillo che nell’ovario nasconde l’ovolo, individuo femminile, nel quale si differenzia il gamete femminile (oosfera, analogo all’uovo degli animali superiori) e in generale alla periferia del complesso, dall’interno verso l’esterno, c) una corona di foglie delicate a colori vivaci (petali) che costituisce la corolla ed una di foglie meno vistose che costituisce il calice, che però talora è assente. Tutti questi pezzi fiorali sono situati all’estremità di una rametto foglifero più o meno corto (peduncolo) che ha la cima dilatata a formare una specie di piedistallo che si chiama talamo. Se i petali sono saldati otteniamo le corolle gamopetale (altrimenti dialipetale). Tra le corolle gamopetale, per i nostri scopi, ricordiamo la corolla tubolosa (petali saldati a tubo) e la corolla ligulata (fig. 6, della T. sinottica), i cui petali saldati insieme, formano una linguetta molto espansa, ma solo da una parte del fiore.

Alcune piante recano un solo fiore, altre ne hanno molti, ma solitari, in altre ancora essi risultano raggruppati secondo particolari regole, in infiorescenze. Le infiorescenze che ci interessano per il nostro discorso sono: il capolino ed il corimbo.

Infiorescenza a capolino

Molti piccoli fiori, l’uno accanto all’altro, sono inseriti su un grosso talamo comune, ora piano, ora concavo o convesso, con superficie nuda o provvista di pagliette più o meno trasparenti (fig.2, a;b della t. sinottica e fig. 5, b;c della T. sinottica). Il ricettacolo è poi avvolto da un involucro (facente funzione di un calice comune) formato da foglie modificate (brattee), talora spinescenti. I fiori del capolino, se regolari e simmetrici, sono tubolosi, se irregolari sono ligulati (fig.6, T. sinottica). Se esistono i due tipi sulla stessa infiorescenza, i ligulati si trovano al bordo del capolino ed i tubolosi al centro e le linguette assumono funzione vessillare (attirano gli insetti). Il fiore delle margherite, delle camomille e dei girasoli, per es., ha proprio questo aspetto e quelli che vengono comunemente indicati come petali, in effetti sono le linguette a direzione centrifuga dei fiori ligulati periferici.

Infiorescenza a corimbo

E’ costituito da fiori, sostenuti da peduncoli di diversa lunghezza, inseriti ad altezze diverse sull’asse principale, che vengono a raggiungere circa lo stesso livello (fig. 3, T. sinottica). Il peduncolo fiorale si distingue da qualsiasi altro rametto perchè non porta foglie ed è inserito all’ascella di una foglia normale o di una brattea. talora rametti con foglie alla cui estremità si situa un fiore (0 una infiorescenza), inseriti a diversa altezza sull’asse principale, sembrano conformarsi a corimbo; in effetti si tratta di falso-corimbo.

LE “ASTERACEE” E RICONOSCIMENTO IN GENERALE DELLE CAMOMILLE

Le piante che sono raccolte nella Val di cecina come camomilla hanno tutte qualcosa in comune: posseggono un “fiore” che non è un vero fiore e se lo osserviamo con una lente di ingrandimento si presenta costituito da un gran numero di piccoli fiori direttamente attaccati (sessili) su un bottoncino (talamo) sostenuto da un peduncolo; al margine, il talamo è “orlato” da”falsi” petali bianchi, formando un complesso di fiori che si chiama come già accennato “infiorescenza a capolino”. Le piante che presentano questa infiorescenza si chiamano “Asteracee o Composite“. Se continuiamo ad osservare  con la lente il capolino, si nota anche (fig. 6), come già detto che i piccoli fiori al bordo (fiori a linguetta, ligulati) sono diversi da quelli al centro (fiori a tubo, tubolosi). Ma il problema centrale è individuare le due specie di camomilla, sottolineandone le caratteristiche i riconoscimento in confronto a quelle di specie affini.

 

LE FOTO E DISEGNI DELLE CAMOMILLE SONO STATI RIPRESI DA INTERNET: SI RINGRAZIANO INTANTO GLI AUTORI (da precisare)  LE FIGURE RIPORTATE  COMUNQUE VERRANNO SOSTITUITE DA FOTOGRAFIE  QUANDO DISPONIBILI

 

RICONOSCIMENTO SUL CAMPO DELLA PRIMA SPECIE DI CAMOMILLA E SUA DISTINZIONE DALLE SPECIE AFFINI

TAV. 1

Matricaria chamomilla, Wikipedia

Matricaria recutita plate 182 in A. Masclef: Atlas des plantes de France Paris (1891)

matricaria_chamomilla_scheda_botanica

TAV. 2

Anthemis cotula

http://www.ct-botanical-society.org

anthemiscotu

Non è così facile per i non raccoglitori abituali riconoscere la “piccola” camomilla, la “vera” camomilla, cioè la Matricaria camomilla. Nella nostra zona spesso vivono, l’una accanto all’altra, piante molto simili alla camomilla, come l’ Anthemis cotula (camomilla mezzana, falsa camomilla) e l’Anthemis arvensis (camomilla bastarda, rara dalle nostre parti) e alcune specie del genere Matricaria che non sono ‘camomille’. Le differenze a prima vista non sono molto evidenti (fig. 4;5, T. sinottica), anche per la presenza di varietà di cotola che tende ad erigere i rami verso l’alto con foglie sempre più filiformi (differenze probabilmente dovute all’esposizione).

Tutte queste specie presentano infatti fiori agli estremi dei rami in forme di capolini gialli con pseudo petali bianchi, a loro volta riuniti in un corimbo o falso-corimbo molto lasso. Anche la convessità del capolino non è una caratteristica di classificazione sicura: varia più o meno con la  stessa modalità in tutte le  specie. le stesse foglie che , bi-tri-pennato-sette tendono a divenire filiformi nella M. camomilla, presentano una tendenza analoga per certe forme di cotola (cotola più eretta). Il carattere invece distintivo centrale per il ricercatore rimane il talamo che in sezione presenta un vuoto in forma di cono acuto (fig. 2 a, della Tavola sinottica e Tav. 1), mentre il talamo della A. cotula e dell’ A. arvensis è nettamente pieno (fig. 5 c; T. sinottica). Il fiore della camomilla acquista così l’aspetto delicato e cedevole alla pressione delle dita. Come carattere di distinzione secondario indichiamo l’odore: il profumo aromatico della camomilla vera si distingue nettamente dal fetore della maleodorante cotola e della quasi inodora A. arvensis. Un terzo elemento di distinzione, anche se meno accessibile, lo scopriamo nella presenza sul talamo, privato dei fiori (questa operazione è più facile quando il capolino è più maturo), di piccole formazioni simili a squamette nella cotola (prevalentemente nella parte superiore, fig. 5 c) e nell’ A. arvensis, mentre sono completamente assenti nella camomilla.

ASTERACEAE A CLASSIFICAZIONE INCERTA

Foto di Asteraceae eseguite da Piero Pistoia, forse ancora una cotula, per puzzo e pagliette sopra il ricettacolo, anche se lacinie foglie non filiformi (Maggio-Giugno, dal Ponte di Ferro a sinistra verso podere S. Giovanni subito prima del bivio per impianti Granchi, sopra strada a destra)

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

genere anthemis (?)

OLYMPUS DIGITAL CAMERA

Genere anthemis(?); campione raccolto da Montecerboli per la Perla circa a metà strada fra bivio Montecerboli e deviazione per Serrazzano, sulla destra.

Foto di Asteraceae forse del genere Matricaria, non succedanee della camomilla, eseguite da Piero Pistoia, classificate da Angelo Bianchi, Erborista (Maggio-Giugno, lungo strada Gabbri). L’infiorescenza è tendenzialmente a CORIMBO?

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

MATRICARIA (?); Infiorescenza tendenzialmente a CORIMBO?

Foto scattata da Pf. Bianchi di fiori degli individui precedenti

foto gabbri

 

RICONOSCIMENTO SUL CAMPO DEL SECONDO TIPO DI ‘CAMOMILLA’ E SUA DISTINZIONE DALLE SPECIE AFFINI

TAV. 3

Chrysantemum leucantemum

da Wikipedia, l’enciclopedia libera (it.wikipedia/wiki/Leucantemum_vulgare)

Planche de botanique de Jaume Saint-Hilaire

Chrysanthemum_leucanthemum0

Leucanthemum_vulgare_-_DESC_-_Thome

COPYRIGHT SCADUTO

Due Foto di Crysantemum leucantemum di CRISTINA MORATTI

Leucantemum....... (1)

Leucantemum....... (2)

 Non c’è nessuna possibilità di confusione nel riconoscimento fra “piccola” e “grande” camomilla (Chysantemum leucantemum nel linguaggio dei botanici), se non altro per il taglio della pianta e del fiore molto più grandi, per il talamo per il talamo piccolo e solo leggermente convesso e le foglie praticamnete intere; insomma sono due oggetti molto diversi. E’ comunque anche abbastanza facile riconoscere questo crisantemo dagli altri pià simili in dimensione. Il leucantemo presenta una foglia (fig. 7; T. sinottica e TAV. 1) oblunga un po’ dilatata alla base più o meno leggermente dentata (“simile alla foglia dell’olivo” dicono i nostri vecchi), mentre per es., il C. corimbosum ha foglie pennato sette (fig. 8 b; T. sinottica) e in alcune varietà bipennatosette e il C. parthenium ha fogli da pennatofide a pennatosette (fig. 9; T. sinottica), ma fiori più piccoli, a linguette più corte e larghe. Ma cerchiamo di precisare alcuni di questi aspetti e distinzioni.

 

Chrysantemum leucantemum

Pianta erbacea annua con fiori ligulati non sviluppati di colore bianco (il centro del capolino è giallo). Ha fusti eretti più alti della vera camomilla, poco ramificati  che sorreggono capolini terminali, sempre più grandi della M. chamomilla, con fiori del disco tubolosi e gialli e quelli del bordo ligulati e bianchi. Le foglie inferiori sono lungamente picciolate (fig. 8 a; T. sinottica e TAV. 3) e le altre sessili (fig. 8 b; T. sinottica) di forma oblunga spatolata con dimensioni decrescenti lungo i rami laterali e dentate leggermente al margine. La pianta fresca è praticamente inodora, ma acquista l’odore classico della camomilla, anche se meno intenso, dopo che i capolini sono stati seccati all’ombra.

OLYMPUS DIGITAL CAMERA

Foto di Piero Pistoia: il C. leucantemum

OLYMPUS DIGITAL CAMERA

Foto di piero Pistoia: fiori e foglie (tendenzialmente a spatola) del C. leucantemum

Chrysantemum corimbosum

Fiore simile al C. leucantemum. I capolini sono avvicinati in una struttura corimbosa rada e povera; nei posti dove si trova si dice di esso che non è camomilla perchè i fiori “non sono da soli”, volendo significare che la pianta possiede infiorescenza a corimbo, mentre il leucantemo si presenta spesso come un solo ramo fiorifero, anche se talora presenta più rami a falso-corimbo (ogni rametto fiorifero infatti ha le foglie, per cui non si configura come peduncolo). La pianta in osservazione ha foglie a perimetro allungato bipennatosette a lacinie quasi lineari con fiori più grandi della camomilla vera e simili al leucantemo: ha per questo le caratteristiche di qualche varietà di C. corymbosum.

 

TAB. 4

Chrysantemum parthenium

https://www:google.it/?gws_rd=ssl#q=chrysantemum+parthenium

commons.wikipedia.org/wiki/File:Chrysanthemum_parthenium_-_Flora_Batava_-_Volume_v10.jpg

Chrysanthemum_parthenium

 

IN QUALI TERRENI SI DEVONO CERCARE LE DUE CAMOMILLE

Il controllo delle ipotesi prospettate in questo paragrafo  derivano da scarse osservazioni dirette, visto anche il numero limitato di stazioni floristiche visitate; per cui dovrebbero essere raccolti ulteriori dati.

L’autore ha tovato la Matricaria chamomilla in terreni argillosi acidi del neoautoctono (appendix 2), meglio se azotati e/o nei terreni silicei (pietrisco e terre a diaspri e, anche se meno vigorosamente in calcari silicei e calcari palombini); allo scrivente sembra addirittura  che nel secondo caso il fattore azoto influisca molto meno. Nei terreni (appendix 2) a gabbro e diabase alterati (rocce verdi dell’alloctono trasgressivo e/o calcarei o su terricci derivati da substrato calcareo (calcari detritici conchigliari  del Pliocene medio, volgarmente e localmente detti “tufo”) ci sembra  inutile cercare la M.  chamomilla.

Anche il C. leucantemum si trova raramente in terreni gabbrici basici, preferisce i pendii argillosi e scarsamente azotati, come sulle terre di riporto delle scarpate lungo le strade, sugli argini calancosi, nei dintorni dei fori dell’Enel, sempre in terre argillose e secche. Forse la sua sopravvivenza è meno critica sul calcare. Lo scrivente, per quello che vale, non ha mai trovato insieme le due specie di camomilla (forse anche per la rarità della Matricaria).

Il C. corymbosum si trova invece in terreno gabbrico e questo potrebbe essere un ulteriore elemento di distinzione.

 

CENNI ALLA UTILIZZAZIONE DELLE “CAMOMILLE” NELLA MEDICINA POPOLARE

Questo paragrafo verrà aggiornato in itinere.

Si accennerà ora alle proprietà officinali della Matricaria camomilla postulando che la “grande” camomilla abbia proprietà analoghe anche se meno efficaci.

Sono officinali i fiori da seccare all’ombra in ambiente ventilato; contengono un’essenza di composizione complessa il cui principio attivo fondamentale però è ritenuto sia l’azulene. L’azulene è una sostanza caratterizzata da una molecola con formula grezza C10 H8; è un isomero del naftalene (comune naftalina), e la sua struttura deriva dalla condensazione di un anello a cinque con uno a sette atomi di carbonio (fig. 10 a  della T. sinottica). Nella camomilla esiste uno speciale azulene: il camazulene, capace di stimolare le funzioni dei sistemi preposti al mantenimento della sanità dei tessuti sia interni che esterni, favorendo i processi riparativi. Si capisce così come la camomilla sia impiegata in cosmesi, nella terapia cicatrizzante, nelle gastriti ed in alcune malattie della pelle. Il naftalene a sua volta è un idrocarburo aromatico (C10H8) con struttura derivata dalla condensazione di due nuclei del benzene (in commercio benzolo, termine fondamentale della serie degli idrocarburi aromatici) (fig. 10 b). Il colorante giallo della camomilla è dovuto invece a glucosidi flavonici. Il glucoside corrisponde ad una formula composta da uno zucchero semplice con un gruppo detto aglicone, di aspetto diverso che caratterizza il composto: se l’aglicone è uno steroide, abbiamo i glucosidi cardiocinetici (Digitale, Adonide, Oleandro…), se è un derivato dell’alcol salicilico, abbiamo i glucosidi della serie salicilica (corteccia del salice, Pioppo, Betulla…) ecc. Nel nostro caso l’aglicone è un flavone o soui derivati ed il composto presenta allora effetto diuretico e diaforetico e promuove in alcuni casi la crescita in resistenza dei capillari e la diminuzione della loro permeabilità (vitamina O). E’ da notare che all’azione di questi composti forse si affianca quella analgesica di qualche altro glucoside ancora  poco conosciuto che agirebbe direttamente sulle terminazioni nervose.

Un pizzico di fiori di camomilla secchi (un cucchiaio da minestra colmo) per una tazza d’acqua da far bollire per due minuti circa (il semplice infuso talora non è efficace) preso prima di addormentarci, è un buon rimedio nelle nevralgie, mal di testa e manifestazioni dolorose dell’apparato digerente. Il decotto (1) (due pizzichi di camomilla per tazza tenuti a bollire per 5-6 minuti) è un ottimo rimedio se usato per sciacqui e gargarismi, nelle infiammazioni della bocca, mal di denti e mal di gola. In un numero imprecisato di decotti  e infusi entra la camomilla per esercitare azione affiancante alle droghe. Citerò solo un decotto per sciacqui e gargarismi sperimentato dal sottoscritto che ha dato risultati ottimi nel mal di gola: Una manciata di foglie di salvia (5 gr), 4 foglie di menta (piperita o comune), un rametto fiorito con tre o quattro foglie di malva, un pizzico di camomilla, in un tazza di acqua e far bollire per 5-6 minuti.

 

COME SI RACCOGLIE LA CAMOMILLA

Poichè la droga corrisponde ai soli fiori, basta staccare i capolini con le dita aperte infilate delicatamente fra i fusti, senza danneggiare le pianticelle in maniera da far continuare la fioritura fina alla disseminazione. Raccogliere l’intera pianta significa diminuire la potenza della stazione di raccolta e, specialmente per la M. camomilla che è una pianta non molto diffusa nelle nostre zone, si rischia di farla completamente scomparire dalla Val di Cecina.

 

DOVE SI PUO’ RACCOGLIERE CAMOMILLA

Fra le  stazioni della M. camomilla che lo scrivente conosce ricordo: a Saline, oltre la fabbrica ENI andando verso Volterra; prima del podere S. Giovanni venendo dal ponte di ferro, ma, a causa di lavori, oggi la stazione è sparita;  oltre Libbiano, lungo la strada di Monterufoli, prima della bandita.

La “grande” camomilla è più diffusa e si può raccogliere in generale nelle zone aride di riporto; la stazione più ricca è situata oltre il bivio per la Leccia, andando verso Serrazzano; sulle scarpate e campi lungo la strada (purtroppo ultimamente lavori nei dintorni del bivio hanno cancellato la stazione floristica). L’autore ha trovato invece  a giugno del 2015 il leucantemum oltre Ponteginori, venendo verso Saline: dopo 100-200 m dalla rotonda, a destra sotto strada in un campo incolto (stazione a rischio). Per chi volesse osservare la varietà del corimboso, esso si trova oltre la “Casina Seconda”, sotto Micciano sul gabbro.

 

 

CONLUSIONI

L’autore spera di essere riuscito, almeno in parte, nel tentativo di lanciare un ponte fra folclore e cultura simbolica, fra mondo delle teorie del senso comune e strutture disciplinari, fra mondo della scuola e cultura richiesta dal vivere quotidiano, aprendo anche alcune prospettive alla soluzione dei problemi posti dall’educazione permanente.

 

APPENDICI

Questo paragrafo verrà aggiornato in itinere.

Appendix 1: alcuni aspetti del processo fotosintetico e cenni alla sua evoluzione a corto raggio.

I disegni sotto riportati, replicati più volte su Internet in svariati altri interventi e appunti di diversi autori di altri blogs, sono stati ritrasferiti rivisitati anche su questo. Se ci sono problemi verranno soppressi.

CENNI ALLA FOTOSINTESI CLOROFILLIANA  (Appunti e pensieri così come vengono, ripresi a spirale)

 

PREMESSA

La fotosintesi clorofilliana è un meccanismo che fornisce nutrimento ed energia e quindi è condizione necessaria e spesso sufficiente per mantenere in vita la pianta e la vita sulla terra. Infatti dalla sua efficienza dipendono la garanzia della riproduzione di tutti i viventi e la continuità stessa della vita.

Le piante verdi sono organismi autotrofi, cioè riescono, a partire da composti inorganici (sali minerali del terreno, acqua e anidride carbonica), a formare composti organici che servono a mantenere e costruire il loro corpo (organicazione): da H2O+CO2 si arriva ad un composto del gruppo degli zuccheri che può condensarsi in amido e insieme a sostanze nitriche e ammoniacali darà composti azotati. Gli animali in genere sono invece eterotrofi, cioè riescono solo a organizzare il materiale costruito dagli autotrofi. Il processo di organicazione del materiale inorganico è permesso da un insieme complesso di reazioni chimiche non ancora completamente capite che si chiama fotosintesi clorofilliana. La fotosintesi perciò è il processo mediante il quale la materia organica, immersa in una atmosfera di ossigeno, si oppone alla sua completa e veloce “combustione” in CO2 + H2O. La respirazione stessa è una specie di “combustione controllata” che l’organismo è riuscito a ‘progettare’  durante la sua evoluzione e utilizzare per i suoi fini.

Ma per passare da materiali semplici (inorganici) a quelli complessi, che si configurano come “mattoni” per costruire la materia vivente, c’è bisogno di un grosso quantitativo di energia, ma anche un “meccanismo strutturato”  progettato e costruito dall’evoluzione per utilizzarla in un processo mirato a tale lavoro.  La pianta cattura tale energia da una sorgente storicamente inesauribile: il sole. La cosa sembra semplice, ma in effetti, in generale, scaldare più molecole semplici (quelle inorganiche) al sole non provoca nessuna reazione utile, come nessun oggetto si muove se ci limitiamo a trasformare acqua in vapore (vedere il 2° principio della termodinamica)!

RACCONTO A LIVELLO ZERO

E’ necessario così prima capire che cosa si intende per ossidazione e riduzione, perché la maggior parte dei passaggi nel processo fotosintetico sono reazioni di ossido-riduzione. E’ inoltre richiesta una minima conoscenza della chimica elementare. Una molecola chimica si ossida quando cede elettroni e si riduce quando ne acquista; nelle reazioni dove entrano in gioco ossigeno e idrogeno, una combinazione con ossigeno significa ossidazione e con idrogeno riduzione (infatti, per es., se l’elemento Ca (neutro,  ossidazione 0) si combina con l’elemento ossigeno (neutro) a dare CaO, cioè Ca(2+) O(2-), si vede che si è ossidato cedendo due elettroni negativi; si dice anche che è aumentato il suo numero di ossidazione da 0 a 2, mentre O si riduce. L’ossidazione è una specie di piccola combustione e libera energia nei dintorni; la riduzione invece ne assorbe. Una molecola che si riduce acquista dentro di sé  energia chimica. Così l’energia solare può essere catturata da molecole che si riducono e trasportata da una molecola all’altra in una catena di ossido-riduzioni con salti energetici in discesa (vedere schemi dei due sistemi fotosintetici). Cerchiamo di capire. La luce spacca una molecola di acqua (fase luminosa della fotosintesi) liberando ossigeno molecolare ( da H2O, i due idrogeno del composto hanno numero di ossidazione 2+,  si formano 2H+ (cioè due protoni, atomi di idrogeno senza elettroni), che rimangono liberi; mentre l’ossigeno passa da -2 a zero: 1/2*O2; si dice che l’acqua si è ossidata liberando due protoni). Durante la fase al buio della fotosintesi avrò disponibili varie molecole di ATP e NADPH ad alta energia chimica costruite durante la fase luminosa (vedere schema Z) che saranno capaci di operare le reazioni chimiche di riduzione ad alto assorbimento energetico richiesto dal  passaggio dall’inorganico all’organico. Rimane comunque il problema sul modo in cui la luce  del sole riesca a spaccare la molecola d’acqua; sembra che l’energia luminosa ecciti una molecola di clorofilla, contenuta nelle parti verdi della pianta (fase luminosa), portandola ad uno stato altamente energetico (salto di elettroni su livelli elevati) così da determinare la scissione dell’acqua, bombardata da quanti di ‘luce’ opportuni, quando ritorna al suo stato iniziale, con il conseguente passaggio dell’energia  anche ai trasportatori di elettroni liberati fino alla zona dove sarà utilizzato per i processi di organicazione del carbonio (ciclo di Calvin). Così all’interno di cellule opportune delle parti verdi della pianta (cloroplasti), che contengono vari tipi di clorofille,  avvengono complicate reazioni di ossido-riduzione in due sistemi fotosintetici, vedere dopo foto (fase luminosa), che conducono alla formazione di molecole di trasporto ricche di energia nei loro legami chimici (ATP e NADPH, vedere dopo) che, nella fase oscura (ciclo di CALVIN), serviranno a costruire le molecole carboniose (organicazione della CO2) utili a produrre poi protidi, lipidi…

Così, nella scissione dell’acqua si libera ossigeno nell’atmosfera. Un riassunto sulle tappe principali del processo fotosintetico è dato  nel così detto “SCHEMA H” di fig. 11 della T. sinottica e ‘SCHEMA ZETA’ che cercheremo di illustrare meglio. Vedremo meglio  introducendo anche la distinzione fra  la fotosintesi delle piante di tipo C3 e di tipo C4 ed accennando ai vari  passaggi ipotetici che, per ora, non sono completamente conosciuti.

Come già accennato le piante verdi sono autotrofe, cioè riescono a produrre molecole organiche complesse (con alta energia nei loro legami) a partire da semplici composti inorganici ed acqua (poveri di energia) con in  più energia luminosa che bilanci almeno la differenza.

Per far questo utilizzano un meccanismo chimico a struttura complessa ancora non completamente compreso, la fotosintesi clorofilliana, che avviene all’interno delle cellule delle foglie verdi dette cloroplasti o plastidi entro cui è contenuta la clorofilla nelle sue diverse forme. Attraverso complicate reazioni durante la fase luminosa, in particolare di ossido-riduzione nel trasferimento energetico, che avvengono in due fotosistemi collegati, vengono prodotte molecole energetiche come l’ATP e NADPH, che serviranno poi alle altre cellule del cloroplasto per sintetizzare nel Ciclo di Calvin, le molecole carboniose, zuccheri, cioè i mattoni di partenza per produrre proteine, lipidi, ….

Il processo globale sembra essere sintetizzato con la reazione:

nCO2 + nH2O + nNhn (?) → (CH2O)n + nO2

Energia per ogni mole = Nh

N=numero di Avogadro=6*10^23 molecole/mole; h=costante di Plank=6.62*10^(-34) joule*sec; ν=frequenza del fotone

IL CLOROPLATO


fotosintesi2_plastidi0001

Questo processo avviene appunto nei cloroplasti o plastidi (simili a mitocondri, gli organuli_fabbrica dell’energia cellulare). Un cloroplasto è un organello all’interno delle cellule delle foglie o delle parti verdi, circondate da una doppia membrana che racchiude un mezzo semifluido, lo stroma. Nello stroma vi è un sistema di membrane ripiegate a formare dischetti, detti tilacoidi (vedi fig. IL CLOROPLASTO ). Un gruppo di tilacoidi sovrapposti formano delle pile in cilindretti detti grana (plurale di granum). Nello spessore della membrana dei tilacoidi ci sono tutti i pigmenti: dalle clorofille nelle loro diverse forme (verdi), ai carotenoidi (gialli rossi porpora) …. Nella parte della membrana dei tilacoidi che contiene anche i trasportatori di elettroni, gruppi di pigmenti formano, insieme ad una sequenza di molecole (catena fotosintetica), i due SISTEMI FOTOSINTETICI II e I.

RACCONTO DI PRIMO LIVELLO

Il racconto è in via di costruzione e correzione.

Questo primo livello precisa brevemente i diversi stadi della fotosintesi clorofilliana. Cerca di esplicitare alcuni passaggi delle reazioni, a partire dalla foto-scissione dell’acqua, che avvengono nei due  fotosistemi durante la fase luminosa (vedere schema Z) e precisa alcuni processi  del ciclo di CALVIN. Nelle ore diurne sulla superficie dei tilacoidi (vedere schema relativo) si attivano molti pigmenti, costituiti da clorofilla-a e l’insieme dei  pigmenti-antenna  in particolare la clorofilla b.  La clorofilla-a assorbe direttamente dalla luce del sole una data lunghezza d’onda che le compete, e dai pigmenti-antenna, dopo che sono stati attivati dall’energia solare, una lunghezza d’onda analoga. Essa si ossida liberando 2 elettroni che passano ad un accettore primario di elettroni che riducendosi acquisisce un alto livello energetico di partenza per il processo. Sotto questi due impulsi energetici,  la clorofilla-a riuscirà a ‘rompere’ anche una molecola d’acqua  in 1 atomo di ossigeno, in due ioni H+(protoni) e  due elettroni che ricaricheranno di energia al momento giusto la molecola di clorofilla-a. Si formerà anche una molecola di ossigeno che andrà a contribuire al 21% di ossigeno nell’aria. I due protoni dell’acqua completeranno infine la riduzione dell’ ADP in ATP e dell’NADP in NADPH, che si troveranno carichi di energia alla fine del processo. Nel contempo dall’accettore primario ad alta energia si distacca una catena di ossido-riduzione con il passaggio in una successione dei due elettroni ricevuti ad una serie di molecole, ognuna delle quali  si ossida (una specie di ‘sbruciacchiamento’) riducendo la successiva che a sua volta si carica di energia, ma ad un livello ancora inferiore e così via, mentre la maggior parte dell’energia liberata ad ogni passaggio va a ridurre trasversalmente una mole di ATP che immagazzina energia per gli altri scopi della pianta. (da rivedere)

UNO SGUARDO FUNZIONALE  ALL’INTERNO DI UN CLOROPLASTO

I DUE SISTEMI FOTOSINTETICI: SCHEMA ZETA (P. Pistoia)

cloroplasto a2

cloroplato b2

LA FOTOLISI DELL’ACQUA, LA ‘POMPA PROTONICA’ E il ‘MECCANISMO CHEMIOSMOTICO’ DEGLI IONI IDROGENO (Ipotesi chemiosmotica di Mitchell). 

Seguire lo scritto sui disegni molto approssimati, ‘INTERNO DI UN CLOROPLATO  a e b, sopra riportati

L’energia luminosa assorbita direttamente e, di riflesso indirettamente convogliata ad imbuto, dalla clorofilla-a (diventata una specie di trappola per l’energia), tramite i pigmenti antenna, provoca salti di alcuni suoi elettroni (per es. 4 se la fotolisi interessa 2 molecole di acqua ossidate a O2) a livelli energetici superiori e subito dopo si ossida trasferendo tali elettroni eccitati  ad un accettore primario che si riduce caricandosi a sua volta di energia. Definiamo risonanza induttiva un percorso per cui una molecola eccitata può trasferire la sua energia ad un’altra molecola adiacente che resta anch’essa eccitata. Così, anche se la clorofilla-a del fotosistema II non può assorbire direttamente quelle frequenze assorbite invece dai pigmenti antenna, quest’ultimi tramite fluorescenza e risonanza induttiva riemettono quanti luce con una lunghezza d’onda conforme alla clorofilla-a (680 nanometri). Il fotosistema II è siglato appunto P680. Nel contempo 4 fotoni sprigionati dal ‘cuore’, centro di reazione del P680  (?), colpiscono 2 molecole di acqua ossidandole a O2  (che si perderanno in atmosfera) con liberazione, nell’intorno, di  4 protoni (ioni H+), man mano trascinati nel lume del tilacoide,  e 4 elettroni che andranno a ricoprire i 4 vuoti interni aperti nella clorofilla-a, che aveva perso 4 elettroni.

La corrente di elettroni lungo i trasportatori sulla membrana del tilacoide ‘pompa’  gli ioni H+, liberati dai quanti di luce nell’ossidazione dell’acqua, nello spazio interno (lume) del tilacoide. Così la densità degli H+ aumenta ed il PH diminuisce nel lume del tilacoide rendendo più acido l’ambiente rispetto allo STROMA del cloroplasto. Gli H+, spinti poi dal gradiente elettrochimico, possono uscire nello stroma fino ad incontrare, uscendo attraverso un canale proteico dove è attivo un enzima per la sintesi  di ATP e NADPH, le molecole da ridurre ADP e NADP+ di ritorno dal Ciclo di Calvin, venendo a favorire questa sintesi.


DA CONTINUARE

fotosintesi_plastidi10001IL RACCONTO DI SECONDO LIVELLO: la ‘piccola’ evoluzione fotosintetica

Durante l’evoluzione delle piante, ad un certo punto del loro albero filetico, la vita che evolve riesce ad attivare un primo processo fotosintetico a clorofilla detto C3. La pianta C3 è una fotosintetica di primo ‘tentativo’, nel senso che, forse per una leggera modifica ambientale, si troverà, almeno in alcune zone, in difficoltà. L’evoluzione del processo fotosintetico può essere considerata nell’ambito delle ‘piccole’ evoluzioni o a corto raggio, rispetto alla generale evoluzione delle piante, anche se ‘sommatorie integrate’ di eventi evolutivi a corta raggio ‘indirizzeranno’ la grande evoluzione. La pianta C3 è una fotosintetica che fornisce come primo prodotto organicato un composto a tre atomi di carbonio (triosio). In effetti questa pianta, in funzione della disponibilità  di CO2, che diminuisce aumentando la temperatura ambientale, insieme al loro rapporto CO2/O2, può incepparsi in corrispondenza del funzionamento di un enzima (il rubisco, RuBP), che invece di legarsi  alla CO2 , si lega a O2 bloccando il ciclo di Calvin al buio e quindi non organica la CO2, entra in foto-respirazione invece di foto-sintetizzare, ‘bruciando’ molecole energetiche invece di costruirle. In effetti l’enzima Rubisco (RuBP) è poco efficiente nel discriminare fra CO2 e O2 , per cui, quando la temperatura dell’aria raggiunge per es., 27-30 °C a salire,  la CO2 in atmosfera diventa sempre più rarefatta, il rapporto CO2/O2 diminuisce, il Rubisco tende sempre più a legarsi con l’O2 e sempre meno con la CO2. E’ allora che l’enzima entra in difficoltà nell’iniziare l’ “organicazione” (cioè trasformare la molecola inorganica  CO2 in una molecola organica più complessa ricca di energia) – es., emblematico: per ottenere un esoso come il glucosio alla fine del ciclo – si rafforza la fase di foto-respirazione, tendendo ad esaurire la riserva di molecole energetiche, invece di costruirle, bloccando o indebolendo, nel migliore dei casi, il ciclo di Calvin. Se la situazione non cambiasse, la pianta soffrirebbe fino a morire. L’evoluzione, a temperatura ambientale elevata (clima caldo-arido), tenderà allora ad intervenire cercando di rafforzare la concentrazione di CO2  dove sta agendo l’enzima, onde impedire il blocco del ciclo di Calvin. Appariranno così le prime ‘piante intermedie C3-C4’ e poi le C4, inventando un meccanismo che permetta durante la fase oscura, a stomi aperti, la raccolta di molecole CO2 (attraverso l’aggancio con un composto chimico) anche nelle cellule parenchimatiche del mesofillo, trasferendole alle cellule dei cloroplasti,  per poi convogliarle alle cellule fotosintetiche, per rendere la CO2  disponibile all’enzima Rubisco (dopo una una reazione di idrolisi sul composto precedentemente accennato) e continuare il percorso C3 fino alla ‘organicazione’ della CO2. Le piante C4 sono una correzione evolutiva (ancora in trasformazione?) delle piante C3. E’ nelle piante CAM (di clima caldo e secco)  che il processo si perfeziona in un meccanismo che risparmia acqua, diviso in due tempi; nel primo, al buio a stomi aperti (bassa traspirazione), si raccoglie e si accumula la CO2 nei vacuoli delle cellule dei cloroplasti; nel secondo tempo, alla luce ma a stomi chiusi (risparmio acqua), continua il vecchio processo C3, col l’enzima Rubisco che aggancia le molecole, questa volta, di CO2 dai vacuoli, ora in concentrazione giusta e procede al buio col ciclo di Calvin. Insomma, la pianta C3, perfettamente funzionante quando la composizione atmosferica era quella di una volta, ora con il mutare delle temperature medie e delle concentrazioni di CO2 e O2 nell’aria e con la diminuzione del loro rapporto dovuti all’inquinamento, si trova fortemente disadattata per cui si riattiva il processo evolutivo.

DA INTEGRARE E CONTINUARE associando i  grafici.

 

Appendix 2: cenni alle formazioni rocciose nei dintorni di Pomarance

Su una serie toscana ridotta dove sono rimaste solo le formazioni evaporitiche, calcari dolomitici e quarziti del Trias (si pensi che la serie toscana completa terminava col Macigno Oligocenico!), si sovrappongono le falde alloctone liguri e al di sopra si situano le formazioni del così detto Neoautoctono (vedere articolo su questo blog cliccando: neoautoctono e vedere anche articolo dello scrivente: Geologia di Pomarance, pubblicato sul numero unico della Comunità, se lo trovate!).

A partire dall’alto, il Neoautoctono (Miocene sup-Pliocene) è costituito prevalentemente da calcari detritici, conglomerati, argille e gessi; l’alloctono ligure è costituito,  specialmente dal complesso ofiolitifero (gabbri, diabasi e serpentine), argille, calcari silicei e diaspri, calcari palombini e calcari marnosi.

Faglie ed erosione hanno messo a nudo nelle diverse parti del paese le diverse formazioni.

 

NOTE

1) INFUSO – Si getta dell’acqua bollente su fiori, foglie o radici e si lasciano in infusione per qualche minuto. Se le parti della pianta sono delicate bastano pochi minuti (addirittura per piante delicatissime, come il crescione, si utilizza acqua tiepida), altrimenti si lascerà in infusione per 10-20 minuti. In alcuni casi è necessario mantenere in ebollizione l’acqua per qualche minuto (camomilla non trattata). per la camomilla industriale (Bonomelli) bastano 4 minuti in infusione.

DECOTTO – Si lasci bollire l’erba in acqua per alcuni minuti (in media 5-6 gr in 100 gr d’acqua per 5-6 minuti.

BIBLIOGRAFIA da aggiornare

Alcuni testi consultati:

Zangheri – Flora italica vol. 1°, vol 2° – Cedam, Padova

E. Thommen – Atlas de poche dela flore suisse – Birkhauser bale

C. Cappelletti – Botanica 1° – Utet

G. Negri – Nuovo erbario figurato – Hoepli

W. Thomson – salute della terra – Idea Libri, Milano

F. Bianchini et al. – Le piante della salute – Mondadori

M. Messegue – Il mio erbario – Mondadori

Giorgio da Cartosio – La salute nelle piante e nelle erbe – Ed. Paoline

D. Manta et al. – Le erbe nostre amiche Vol. 1°, 2° 3° – Ed. Ferni, Givra

E. G. Vaga – Raccogliere le erbe aromatiche e medicinali – De Vecchi

U. Pratolongo – Chimica vegetale ed agraria – Ramo editoriale agricoltori

-In herbis salus- a cura della Ditta Minardi – Bagnacavallo (RA)

PIERO PISTOIA

APPUNTI DIDATTICI PER UNA RICERCA SULLA RIVOLUZIONE SCIENTIFICA NEL SECOLO XVII (a cavallo del 1600): una specie di ‘dispensa interna’ da distribuire ad alunni ed insegnanti; del dott. Piero Pistoia; post aperto ad altri interventi

INTERVENTO  IN COSTRUZIONE….

QUESTI APPUNTI SONO STATI SCRITTI, ENUCLEANDOLI DAI TESTI DI RIFERIMENTO, PER SERVIRE COME SPUNTI DI DISCUSSIONE IN UNA SERIE DI LEZIONI SUL SEICENTO IN UN TRIENNIO DELLA SCUOLA MEDIA SUPERIORE DA SVOLGERSI A PIU’ VOCI (DOCENTI DI FISICA, LETTERATURA, FILOSOFIA E CHIMICA)

OGNI CONCETTO PROPOSTO VERREBBE CHIARITO E AMPLIATO NELLE LEZIONI  E NEL SUCCESSIVO DIBATTITO. A cura del dott. Piero Pistoia

INTRODUZIONE

Le grandi idee anticipatrici della rivoluzione scientifica del secolo XVII°

La Rivoluzione Scientifica del secolo XVII°, che segna una rottura profonda col passato dell’umanità ed inaugura l’epoca  nella quale noi stessi viviamo, non può essere interpretata correttamente senza un riferimento ai grandi cambiamenti economico-sociali, religiosi, culturali, che, già a partire IV° e V°, ruppero l’orizzonte della società e dell’umanità medioevali, introducendo fermenti potenti e destinati ad operare rivolgimenti sempre più profondi nella vita sociale e nel pensiero.

In sintesi potremmo dire che a livello sociale ciò che emerge sempre più chiaramente è la crisi del vecchio ordinamento feudale e l’affermarsi sulle sue macerie dello stato nazionale e della monarchia assoluta che trovano la loro forza principale nell’alleanza fra il monarca e la borghesia mercantile.

Tutto questo è un processo non lineare, non obbedisce ad un rapporto deterministico fra struttura produttiva e sovrastruttura politico-statuale: ad esempio l’Italia che è un paese la cui base produttiva è tecnologicamente più avanzata e che si pone fra il 1300 e il 1500 all’avanguardia economica, non riesce a costituire una stato moderno e questo rappresenterà un elemento di fragilità che, unitamente alla crisi economica dei secoli seguenti, la porterà ad una fase di decadenza.

Comunque è in Italia che si afferma e dà i suoi frutti più significativi quel profondo rivolgimento culturale che è rappresentato dall’Umanesimo e dal Rinascimento.

A prescindere dai problemi inerenti la distinzione fra i due momenti il contributo complessivo apportato alla cultura umanistico-rinascimentale può identificarsi nei seguenti aspetti:

a) l’affermarsi dell’autonomia del mondo umano rispetto al fondamento religioso come si esprime nel concetto di bellezza assunta quale fine esclusivo dell’operare estetico e del concetto di potere quale fine esclusivo dell’operare politico (Machiavelli);

b) nella riproposta del pensiero antico in tutti i suoi aspetti non più filtrato dai pensatori cristiani, ma ripreso direttamente alle fonti originali; ciò  rompe l’unità culturale del Medio Evo e pone le basi per lo sviluppo della libertà di pensiero (si pensi al Pomponazzi e al Valla…); inoltre il neoplatonismo rinascimentale con il discorso sulla magia pone le basi di una filosofia naturalista e accentua d’altra parte il tentativo i ricercare nella Natura stessa le sue leggi attraverso la matematica. Contemporaneamente in Germania esplode la Riforma Protestante ad opera di Martin Lutero e Giovanni Calvino.

Per certi aspetti può sembrare che le teorie teologiche dei riformatori, con il loro ribadire l’assoluta dipendenza del’uomo da Dio, rappresentino un momento di reazione e non i progresso. Tuttavia non è così. La tesi protestante, dal momento che assoggetta con più forza l’uomo al volere di un Dio remoto, di fatto lo svincola, attraverso il concetto di libero esame delle Scritture, dal potere vicino e reale della Chiesa e ne esalta l’autonomia di giudizio e libertà. In più si consideri come la diffusione dell’istruzione elementare conseguente alla necessità di far leggere la Bibbia a tutti i fedeli abbia creato, per così dire’ un terreno diffuso assai più fertile per il sorgere della mentalità scientifica.

Di fronte alla Riforma, la Chiesa cerca di correre ai ripari  e di restaurare la tradizione attraverso la Controriforma. La Controriforma e l’invasione spagnola pongono praticamente fine all’esperienza rinascimentale in Italia. Tuttavia lo spirito rinascimentale trova la sua ultima e particolarmente coraggiosa espressione nella filosofia della Natura (Telesio, Bruno e Campanella) che traduce in termini di teoria filosofica lo spirito rinascimentale e rivendica apertamente il valore della libertà di pensiero. Questi uomini pagarono duramente di persona.

IL QUADRO CULTURALE IN CUI I REALIZZO’ LA RIVOLUZIONE SCIENTIFICA

All’inizio del seicento la cultura europea era ancora in gran parte legata alla tradizione aristotelica formatasi nel Medio Evo, tradizione che aveva le sue roccaforti nell’insegnamento accademico ed universitario, nonchè nel sostegno che riceveva  da parte della Chiesa alla cui teologia la teoria aristotelica, filtrata da Tomismo, faceva supporto.

La visione aristotelica della realtà si caratterizza essenzialmente per i seguenti aspetti

a) Una concezione gerarchica e piramidale dell’Universo, dalla materia bruta, potenza senza forma, alle piante dotate di anima vegetativa, agli animali forniti anche dell’anima sensitiva, all’uomo in cui, accanto a quella vegetativa e sensitiva, esiste anche l’anima razionale, fino alle intelligenze pure e angeliche e a Dio, forma pura, motore immobile, causa incausata;

b) una concezione della scienza che vuole descrivere l’essenza delle cose, non si contenta di capire “come” un certo fenomeno avviene, ma pretende di arrivare al “perché” del fenomeno; strettamente connesso a questo è l’aspetto antropomorfico di molte delle “spiegazioni” fornite dalla scienza aristotelica (i corpi pesanti cadono perché spinti a raggiungere il loro logo ideale, naturale…);

c) la riconferma dell’antinomia primitiva fra un “cielo” ed una “terra”, che dà  luogo ad una convinzione secondo cui le leggi scientifiche scoperte per la terra non valgono per il cielo e viceversa;

d) l’incapacità di trovare un aggancio fra teoria ed esperienza, per cui il metodo della scienza aristotelica è il metodo logico-deduttivo, fondato sul sillogismo e sulle altre figure della logica aristotelica stessa.

Proprio quest’ultimo aspetto appare ricco di particolari conseguenze, in quanto spiega il fallimento, o meglio la “non risolutività”, delle critiche speculative portate sia all’aristotelismo nel suo complesso sia a sue particolari dottrine scientifiche da parte di alcun scuole medioevali; in particolare dagli Occamisti.

Agli Occamisti (Occam stesso, Buridano e i loro seguaci continuatori) si deve ad esempio la così detta teoria dell’impeto che spiega il movimento, senza far intervenire intelligenze angeliche motrici delle stelle e dei pianeti, necessarie alla teoria aristotelica, che ammetteva  solo il movimento per contatto. Non est moltiplicanda entia praeter necessitatem. Ma la teoria dell’impeto rimase sempre in minoranza nelle Università; per la semplice ragione che essa, risultando metodo metologicamente omologo alla dottrina aristotelica del moto, doveva cedere le armi di fronte a quest’ultima che aveva dalle sue le forze della tradizione.

Un esempio ancor più importante nello stesso senso lo si può trovare nel carattere di disputa senza fine che inizialmente sembrò assumere anche la polemica fra la Teoria Geocentrica Tolemaica  inglobata nel “corpus” delle dottrine aristoteliche e la nuova Teoria Eliocentrica formulata da Copernico: solo le prove empiriche trovate da Galileo e le conferme matematiche elaborate da Keplero e poi “spiegate” dalla teoria di Newton, nell’ambito del nuovo metodo sperimentale, sanzioneranno, più tardi, la vittoria senza remissione dell’ipotesi copernicana  su quella tolemaica, anche se già nel corso del secolo stesso non mancano le prime intuizioni sulla relatività del movimento e dei punti di vista (Lebnitz).

Questa cultura accademica, chiusa nel castello stregato delle sue certezze, non è tuttavia affatto rappresentativa della cultura degli inizi del seicento nella sua interezza: al di fuori di essa esistono altre realtà culturali.

In primo luogo lo sviluppo dell’artigianato da una parte e dell’ingegneria dall’altra, producono una nuovo cultura in cui, allo stato latente, si ritrovano potenzialità che, poi, la moderna cultura scientifica svilupperà pienamente. Gli artigiani erano sempre esistiti, anche nell’antichità e nel medio Evo: peraltro ora nel XV e XVI secolo l’artigianato assume forme più complesse che, a lungo andare, esigono non solo l’applicazione pratica e la tradizione orale, ma tentativi di sistemazione teorica, di esplicitazione di principi che sono alla base dei vari procedimenti tecnici. Nasce, in questo modo una letteratura artigiana che, sempre più esplicitamente, rivendica in significato del ricorso all’esperienza che produce anche  alcune scoperte scientifiche. Le produce però quasi per caso mancandole del tutto un’adeguata consapevolezza metodologica e teorica: insomma la cultura artigiana non trova ali capaci di volare abbastanza in alto e recidere i legami troppo stretti con la pratica.

Paralleli sono gli sviluppi, realizzatisi specialmente nell’Italia rinascimentale, dell’ingegneria e della meccanica e dei quali le figure più rappresentative sono senza dubbio quelle di L. da Vinci, di N. Tartaglia e del fiammingo Stevino. Ciò che è importante nel contributo da ingegneri e architetti è, senza dubbio, l’uso nuovo che essi fanno della matematica: la matematica era concepita dai greci e sulla loro orma dai medioevali come scienza degli enti puri, priva di qualsiasi aggancio con la pratica e la misurazione; gli ingegneri e gli architetti rinascimentali ne fanno, invece, uno strumento pratico e la usano per la prima volta nella misura.

Tuttavia questo nuovo uso della matematica non è sufficiente da solo a configurare il metodo scientifico:  lo stesso Leonardo non può in alcun modo considerarsi il fondatore del moderno metodo scientifico.

Vi è poi da considerare una terza componente culturale: la filosofia rinascimentale della Natura (Telesio, Bruno e Campanella). Non riteniamo di doverci soffermare su di essa, malgrado l’importanza della rottura con l’aristotelismo, perché trattandosi di una speculazione essenzialmente metafisica, legata ad un concetto mistico di esperienza, questa filosofia ha un peso marginale nello sviluppo del metodo scientifico.

Le nuove filosofie che sorgono nel seicento rappresentano tutte un tentativo di trovare un nuovo e più efficace rapporto fra la teoria  e l’esperienza,fra il mondo dei dotti da una parte e quello degli artigiani e degli ingegneri dall’altra, dal momento che la mentalità ormai cambiata rifiuta di affidarsi alla sola ragione speculativa degli antichi e dei medioevali.

IL SISTEMA FILOSOFICO EMPIRISTA

Una prima elaborazione in questo senso è rappresentato dall’empirismo inglese, che, sorto con Bacone, fu poi continuato da Locke e si risolse, un secolo più tardi, nello scetticismo pragmatico di Hume.

Due sono i postulati fondamentali della concezione empirista. Il primo postulato è rappresentato dalla convinzione che ogni conoscenza derivi dall’esperienza acquistata dalla mente attraverso i sensi secondo la nota formulazione di Locke della “tabula rasa”: in altre parole non esistono che giudizi sintetici a posteriori. Qualsiasi proposizione non direttamente basata su dati dei sensi ha la sua origine o nella memoria o in una certa elaborazione dei dati sensoriali tramite il linguaggio.

Tuttavia l’affermazione del primato dell’esperienza rischierebbe di restare sterile e di far ricadere gli empiristi nella tradizione artigianale e negli errori dell’empirismo greco con la conseguente impossibilità di costruire leggi generali della scienza, se non fosse introdotto un secondo postulato: il Principio di Induzione, grazie al quale si crede di poter generalizzare a partire da casi singoli. Il metodo dell’induzione elaborato da Bacone ha caratteristiche qualitative e in ciò e il segno del suo rapporto esclusivo con la tradizione artigianale, trascurando il rapporto con ingegneri e architetti in direzione della matematica. Esso consiste nella classificazione secondo attributi dei fatti dell’esperienza che permette poi, attraverso la costatazione di aspetti comuni riguardanti l’attributo posseduto, di risalire a proposizioni di carattere generale (leggi di Natura).

Peraltro proprio questo motivo dell’induzione che sembra essere  la forza dell’empirismo moderno introduce al suo interno una profonda contraddizione: come sottolinea con forza Hume l’induzione non è mai giustificabile né in termini empirico-sintetici né in termini analitico-razionali.   Il problema affacciato da Hume è  molto serio : esso ha suggerito a Kant la pseudo-soluzione dell’introduzione dei giudizi sintetici a priori,  successivamente ha trovato una parziale soluzione in termini del probabilismo invocato dai neopositivisti moderni; infine si è chiarito nella moderna prospettiva epistemologica proposta da Popper che lo risolve in una nuova versione del metodo scientifico.

CHI VOLESSE SAPERNE DI PIU’ SUL PROCESSO INDUTTIVO VISIONARE ALTRI ARTICOLI DEL BLOG.

GALILEO ED IL SORGERE DEL METODO DELLA SCIENZA FISICA

Se da un a parte il metodo razionale tradizionale che, nonostante partisse (o presumesse di partire) da “princìpi necessari ed evidenti” ed utilizzasse i metodi della logica, portava invece a dispute filosofiche a non finire, senza riuscire a far luce sulle questioni trattate; dall’altra il metodo induttivo-qualitativo baconiano, trascurando l’utilizzazione della matematica, lasciava ancora in notevole indeterminazione il rapporto teoria-fatti, portando a risultati i scarso valore “intersoggettivo”.

In questo contesto Galilei si accorse da una parte che  i  “princìpi necessari ed evidenti” della tradizione non potevano essere precisati in maniera matematica, per cui si “deduceva”  da proposizioni in effetti vaghe e nebbiose, dall’altra rimaneva imprecisato il rapporto fra le esperienze e le ipotesi indotte, per cui, generalmente, più ipotesi, anche in contraddizione, sembravano essere ugualmente accettabili dall’esperienza (Bacone, per es., non riuscì col suo metodo a decidere sui due sistemi del mondo).

D’altro canto, nella soluzione di problemi, anche se ben più circoscritti, sembrava che l’aritmetica, geometria e la statica archimedea fornissero risultati soddisfacenti, anche in rapporto con gli accadimenti naturali. Quindi sembrò a Galileo che le incertezze ed i dubbi nella conoscenza del mondo fossero in qualche modo imputabili  al trascurare o comunque ad una utilizzazione errata, nella ricerca delle leggi naturali, del metodo matematico. Già ingegneri ed architetti utilizzavano la matematica nella misura e per ricavare semplicemente leggi empiriche riguardanti certi aspetti della meccanica.

Una prima conseguenza dell’uso della matematica condizionò Galileo verso la precisazione del concetto di esperimento come “fenomeno semplificato”. Il passaggio da esperienza ad esperimento implica una rottura qualitativa di una certa importanza, se si pensa che nel passato il concetto di esperimento scientifico non era conosciuto. Si parlava infatti di osservazione, descrizione dell’osservazione, misurazioni empiriche, ma non di “esperimento”. L’esperimento era un modo inventato da Galileo per interrogare la Natura in maniera che la Sua risposta fosse a)  “intellegibile” e b ) il più possibile indipendente dall’uomo stesso. L’esperimento è infatti un intervento attivo, quasi di “costrizione”, sulla Natura del fenomeno perché si realizzino i punti precedenti. Si osserva il fenomeno naturale sul quale influiscono una quantità indefinita di fattori, molti dei quali addirittura sconosciuti: poi si “costruisce”  in laboratorio un fenomeno nuovo (secondo particolari accorgimenti suggeriti, per es., dalla precisione degli strumenti a disposizione, per facilitare la misura, come quello di utilizzare un piano inclinato per studiare la caduta libera), sul quale agiranno solo alcuni fattori, appartenenti anche a quello naturale, scelti dallo sperimentatore (la scelta, alquanto arbitraria, è in parte condizionata e da parametri individuati da uno studio precedente e dalla ” domanda” che si vuol porre alla Natura; certamente verranno trascurati come “inessenziali” i fattori sconosciuti). Se vogliamo poi che la Natura ci “risponda” sul carattere di alcuni dei fatti trascurati nel primo esperimento, “inventiamo” un altro fenomeno da “costruire” in laboratorio, ove agiranno i detti fattori e ricaveremo le uniformità che governano questo secondo aspetto del fenomeno naturale. Chiaramente si ammette che sovrapponendo i due risultati  si possa rilevare il meccanismo del fenomeno complesso che ha luogo quando non vi sia interferenza da parte dell’uomo. Grazie ad eventi artificiali realizzati negli esperimenti, i fenomeni complessi della Natura vengono analizzati sulla base delle loro parti costitutive.

Mentre le correnti neoplatoniche  e neopitagoriche cercano di attribuire numeri ai fenomeni singoli tramite il valore “magico” dei numeri che rappresentavano certi fenomeni  per loro “virtù”, per cui studiando la distribuzione dei numeri si potevano ricavare  le proprietà dei fenomeni, Galileo riesce a compenetrare esperienza e numero tramite la misura. Così la “domanda” viene posta in termini di relazione matematica ammettendo che “le relazioni che intercorrono fra grandezze naturali, possono essere ricondotte a relazioni fra numeri che rappresentano le loro misure”.

L’uso della matematica limitò anche il campo di indagine sulla natura; infatti Galileo non si rivolse alle “massime questioni” e ai problemi generali riguardanti i “perché” dell’Universo, ma spostò invece l’asse della sua ricerca verso il “come” (non le “cause”, ma le “passioni” del moto). La sua indagine si limitò a studiare  una sottoclasse della classe dei moti dell’Universo: il moto dei gravi, giungendo alla soluzione di alcune questioni importanti del moto naturale degli oggetti nei dintorni della terra, inserendole per la prima volta in una teoria scientifica.

Galileo utilizzò il metodo matematico in due forma:

1 – Cercò ipotesi che potessero essere traducibili in simboli matematici e, seguendo e perfezionando il metodo degli ingegneri, tradusse, attraverso l’esperimento e la misura, in matematica le “proposizioni sperimentali, cercando poi dall’ipotesi matematica di partenza di dedurre un’altra confrontabile con quella sperimentale (nel moto di caduta dei gravi propose all’inizio due ipotesi: v=kt  v=ks).

2 – Fece della matematica uno strumento che utilizzo come veicolo di “spiegazione” fra teoria e dati in un sistema teorico scientifico. Utilizzò cioè la matematica per spiegare fenomeni nuovi a partire dai postulati della sua teoria, inquadrando le diverse proposizioni sperimentali in un “corpo” di conoscenze organico e coerente. La scienza non deve solo descrivere ma anche spiegare. Galileo in quest’ultimo senso non si limita a trovare la legge, ma costruire una struttura razionale scientifica che permetta di unificare le diverse leggi sperimentali in un unico sistema di “spiegazione”.  L’importanza di Galileo è di avere impostato il problema in questo senso, anche se il suo sistema riguardava solo una zona di conoscenza molto limitata; non riuscì, ad es., ad inserire neppure la legge dell’isocronismo delle piccole oscillazioni del pendolo, da lui scoperta, rimanendo così un dato bruto.

L’uso della matematica sembra imposta a Galileo dalla natura: la natura parla il linguaggio matematico, capibile dalla ragione umana (Platonismo galileiano). Oggi ci siamo resi conto che è l’osservatore che impone alla Natura, tramite l’esperimento, di parlare il linguaggio matematico, comprensibile dalla mente umana; questo è un altro modo di esprimere il postulato della “comprensibilità della Natura”.

Le ipotesi, gli assiomi, le definizioni generali non sono ricavati dall’esperienza e solo raramente trovano controllo diretto nell’esperimento: spesso anzi sono lontani dall’esperienza stessa. Basta che le “proposizioni” dedotte matematicamente da tali assiomi abbiamo conferma sperimentale, perché tutto il sistema teorico acquisti significato scientifico. In tal modo la verità o falsità dei postulati è riposta nelle verità o falsità degli “accidenti” da essi edotti. Non ha più significato il problema se essi siano “necessari ed evidenti” anzi Galileo stesso considererà i suoi postulati poco evidenti. In generale Galileo ammetteva tacitamente che i suoi postulati, anche se in ultima analisi fornivano proposizioni conformi a quelle sperimentali, potessero essere scarsamente evidenti, tanto da ammirare “l’eminenza dell’ingegno di quelli che… hanno fatto forza tale ai propri sensi, che abbiano possuto antepor quel che il discorso gli dettava”  (il postulato; nella fattispecie, il Sistema Copernicano) ” a quello che le sensate esperienze gli mostravano apertissimamente contrario” Più oltre si meraviglia come sia stato possibile in Aristarco e Copernico che ” la ragion abbia possuto far tanta violenza al senso”, da far loro accettare che la terra e gli altri pianeti girassero intorno al  sole. E’ spesso il senso e l’esperienza comune, che controllate dalla cultura media del tempo, impediscono e ostacolano la costruzione orizzontale della struttura della scienza. Sembra addirittura che si plauda  ad Aristarco ed a Copernico per aver proceduto “controinduttivamente”; e se è vero che proprio con la dinamica  ed il telescopio di Galileo, i dettami del senso vengono a favorire la teoria copernicana, questo nuovo “senso” è  “superiore e più eccellente” di quello comune e alla utilizzazione di esso Galileo giunge solo perché con la ragione era riuscito a rifiutare i dettami dell’esperienza comune del suo tempo!

La lontananza delle “proposizioni mentali” dall’esperimento, in apparenza talora contrarie all’esperienza, presentando tuttavia la possibilità del loro controllo, lascia aperta alla scienza la possibilità di superare le costrizioni della tradizione religiosa e di quella filosofica, direttrici lungo le quali operava il “principio di autorità” e per le quali il riferirsi all’esperienza significava, se mai avesse avuto significato far riferimento esclusivo al senso comune. Che cos’è allora che suggerisce i princìpi all’intelletto?  Occorre una mente geniale, orientata a lunga riflessione sui problemi in studio (einfunlhung = immedesimazione) ed anche un po’ di fortuna.

Ci domandiamo  ora infine a che punto Galileo fosse convinto che il controllo delle ipotesi riposasse solo sui dati empirici, ottenuti da strumenti allora ben poco precisi. Come già accennato, alcuni interpreti dell’opera di galileo a tendenza neo-platonica sostengono che la garanzia della scientificità derivasse a Galileo da fonti diverse dal dato empirico, come la fiducia istintiva nella semplicità e conoscibilità della Natura, nel concetto di simmetria ecc. Se poi la realtà così investigata rappresentasse la “vera” realtà è un problema che Galileo sembra risolvere in maniera positiva, tramite la distinzione fra qualità primarie e secondarie, anche se sembra non sia suo intendimento pronunciarsi sull’essenza metafisica della realtà.

Lo studio di Galileo si rivolge al movimento degli oggetti sottoposti alla forza di gravità nelle vicinanze della terra, siano essi stati in caduta libera o su traiettoria prestabilite o lanciati.

Prima di Galileo, la caduta dei gravi veniva spiegata tramite il sorgere sull’oggetto di una forza dovuta alla “necessità” di giungere al proprio luogo (teoria aristotelica) o al proprio ” affine” (teorie neoplatoniche). La velocità acquisita veniva considerata proporzionale alla forza e inversamente proporzionale alla resistenza: v=kF/fr; e si ammetteva che fr fosse sempre diversa da zero (orror vacui). Qualcuno passò anche al logaritmo, v=klog(F/fr) per render ragione della quiete. Comunque anche il moto uniforme e rettilineo aveva bisogno di una forza. Il lancio dei proietti veniva spiegato come dovuto ad una azione successiva nel tempo dell’ impetus iniziale (teoria dell’impetus) o di una spinta a contatto da tergo dovuta all’aria che si richiudeva (teoria aristotelica del movimento) e della forza di gravità. Nel 500 infatti, per spiegare la natura della traiettoria, alcuni pensarono di far agire contemporaneamente impetus e gravità.

I postulati della teoria di Galileo furono:

1 – la diretta proporzionalità fra velocità all’istante e tempo nella caduta libera dei gravi, ovvero i gravi in caduta libera si muovono di moto uniformemente accelerato;

2 – la velocità acquistata o perduta da un mobile, vincolato a muoversi lungo una traiettoria prestabilita, quando passa da un punto all’altro, è quella stessa che acquisterebbe o perderebbe discendendo o salendo lungo un tratto verticale uguale alla differenza di quota. Su tale postulato si basa l’equivalenza relativa al tipo di moto fra tutti i piani inclinati (compreso il verticale). Da esso si deduce inoltre, in un esperimento teorico,  che in assenza di forza il corpo perdurerebbe per sempre di moto circolare uniforme (formulazione errata del suo Principio d’Inerzia). Da quest’ultima affermazione, leggermente modificata, discende chiaramente il principio di Relatività Galileiano, per cui tutti gli oggetti appartenenti ad uno “spazio” che si muova di moto uniforme (rettilineo non precisato) non intervengono fenomeni che possono far capire di essere in movimento. Con ciò si veniva a superare anche la più forte obiezione avanzata dai Tolemaici contro il sistema copernicano (e contro Aristarco da Samo), per cui un corpo lanciato verticalmente in aria, se la terra si muovesse doveva necessariamente ricadere spostato verso occidente.

3 – Principio di interdipendenza dei movimenti simultanei. Galileo spiega la traiettoria non verticale dei gravi come risultante dalla combinazione contemporanea di un moto orizzontale uniforme e di uno uniformemente accelerato verticale.

a) Scarsità dello strumento matematico (che non permise, per es., a galileo di inquadrare e ritrovare a partire dai suoi postulati le legge del pendolo).

b) Eccessiva restrizione dei Princìpi.

Nessun collegamento fra meccanica terrestre e meccanica celeste (impedito probabilmente dalla formulazione errata del suo Principio di Inerzia).

d) Ammissione tacita di uno spazio e tempo assoluti.

Huyghens provvide a ” spiegare” con i postulati di Galileo, i problemi particolari lasciati insoluti. Newton estese i principi, ottenendo una unificazione fra meccanica terrestre e meccanica celeste. L’ultimo punto rimase per secoli e secoli oscuro fino all’avvento della relatività einsteniana.

Infine  è da precisare che altre questioni particolari studiate da Galileo non furono mai inquadrate in una teoria scientifica fino al nostro secolo: come per es., quella riguardante l’uguaglianza del periodo del pendolo per oggetti di peso diverso, o, per il II° postulato, il fatto che oggetti diversi cadendo liberamente posseggano la stessa accelerazione (se cadono dalla stessa altezza impiegano lo stesso tempo).

Infine accenniamo al famoso Principio di Continuità di Galileo di grande fecondità scientifica, una specie di metodo mentale che sottende tutto il lavoro scientifico galileiano. Galileo adattava gradualmente i suoi pensieri ai fatti, tenendo fermi  questi pensieri fino alle estreme conseguenze. Variava nella mente gradualmente le circostanze di un caso particolare in studio, tenendo ferma nello stesso tempo l’idea già formulata su esso. Un metodo potente ed economico che facilita la comprensione di tutti i fenomeni naturali con fatica intellettuale minima.

LE CORRENTI RAZIONALISTICHE NELLA FILOSOFIA E NELLA SCIENZA DEL 1600

CARTESIO

Il sorgere e l’affermarsi del metodo sperimentale sulla scena culturale del 1600 provoca la crisi definitiva del pensiero metafisico e del razionalismo tradizionale.

Gli enti metafisici, i postulati su cui si basava tutto l’edificio dell’aristotelismo, dimostravano di non aver affatto quel carattere di necessità e di universalità che si erano attribuiti.  D’altronde anche il sistema di deduzione dalle “verità” prime di “verità” ulteriori si era imostrato inadeguato con la sua necessità continua di far intervenire enti e principi animistici, dei quali la scienza moderna stava dimostrando l’inutilità (Occam).

In questo contesto sorge dal mondo culturale dotto il grande disegno di fondazione i una metafisica razionalistica che non solo non contrasti con la scienza moderna, ma ne sia sostegno. Iniziatore e artefice i tale  tentativo fu Descartes. Questi si pone come l’altra direzione speculare, opposta e complementare, a quella di Bacone Come l’uno aveva ripreso la tradizione artigiana ignorando la matematica, l’altro riprende la tradizione dotta ignorando l’esperienza. Questo impedisce ad entrambi di intravedere il fecondo contatto fra i due mondi trovato da Galileo.

Il procedimento di Descartes consiste nell’eliminare, attraverso il dubbio metodica, tutto quanto nella vecchia metafisica e nel razionalismo tradizionale vi era di superfluo, cercando quei principi primi che, per la loro immediata evidenza alla ragione, avessero carattere di idee chiare e distinte.

La prima di queste idee che secondo Descartes sfugge ad ogni dubbio scettico è l’idea dell’Io: l’Io che dubita e quindi pensa, si pone per lui come evidenza indubitabile. Occorre subito far notare che tale evidenza è solo intuitiva e psicologica, deriva più che altro dalla volontà di autorassicurarsi da un’ansia di stabilità del soggetto stesso, ossia da fattori psicologici non logici. Cartesio ritiene inoltre che all’Io sia presente un’altra verità innata, quella di Dio e tale verità, siccome non può derivare dall’esperienza, deve essere per forza stata messa dalla mente umana da Dio stesso di cui quindi si afferma l’esistenza, come II° postulato del sistema. Ma l’affermazione dell’esistenza di Dio serve a sua volta per fondare la veridicità del mondo esterno a la mente umana, perché altrimenti Dio sarebbe ingannevole, ciò contraddice  l’idea di perfezione implicita nel concetto di Dio. Una volta dimostrata l’esistenza del reale e la possibilità di un rapporto positivo fra la mente ed il mondo, Cartesio costruisce una cosmologia centrata tutta su di un rigoroso dualismo, quello fra res cogitas (pensiero)  e res estensa (materia), definendo in termini razionali le qualità fondamentali di quest’ultimi: estensione, forma e movimento. E’ importante sottolineare questo aspetto, perché, grazie ad esso, Cartesio è riuscito ad immaginare un universo pieno, in quanto estensione è materia, un universo in cui non c’è più bisogno di una agente antropomorfico, giacché il movimento non ha più bisogno di cause, un universo in cui vengono espulse anche la forza e la massa, in quanto al tempo di Cartesio questi due concetti contenevano troppi residui antropomorfici. Viene fuori così un mondo di natura geometrica, matematica e cinematica, privo della dimensione dinamica, Il grande merito storico di Cartesio, quello che fa di lui l’altro padre della scienza moderna, sta nell’avere per sempre cacciato dalla Natura gli spiriti; la res cogitans è separata radicalmente dall’universo fisico e quindi anche dal suo corpo: tutto ciò che dipende dalla relazione mente-corpo e mente-universo, come le cause secondarie (odore, sapore, colore…) non ha nessun significato per la comprensione della materia da parte del pensiero (fisica meccanicistica). Descartes ritiene così di poter costruire una fisica a carattere completamente razionalista, dedotta logicamente dalle qualità prime della materia e a tale costruzione egli mette in effetti mano edificando una costruzione teorica per più aspetti ingegnosa.

Cartesio partì dal postulato che  l’estensione creata da Dio possedesse un movimento rotatorio, in quanto esso era il solo movimento possibile in un universo inteso come totalità. Tale movimento rotatorio porta per attrito a creare vortici interni, generando tre tipi fondamentali di materia:  quella costituente il sole e le stelle (particelle piccole di forma sferica, prima materia), quella costituente lo spazio interplanetario (particelle piccole angolose, seconda materia), e quella costituente i pianeti (frammenti pesanti, terza materia). La gravità e quindi la caduta dei gravi ed i moti planetari, che per la prima volta vengono unificati in un unico  ordine di fenomeni a differenza di Galileo, vengono spiegati in definitiva entro questo ordine di idee da Huyghens come dovuti allo “sforzo che compie questa materia fluida (seconda materia) per allontanarsi dal centro e disporre nei posti dove abbandona quei corpi che non possono seguire questo movimento” (dimostrazione del secchio ruotante con pezzetti di ceralacca).

Tuttavia questo edificio ha numerosi punti deboli, il principale dei quali è da considerarsi la sua inadeguatezza al progetto iniziale di una fisica completamente dedotta: infatti è facile vedere come nella pratica scientifica Cartesio anziché dedurre logicamente faccia spesse volte ricorso all’esperienza quotidiana attraverso analogie esplicative. D’altro canto il ruolo dell’esperimento nel sistema cartesiano è ridotto solo a strumento di conferma delle idee fornite ed elaborate dalla teoria e non ha insomma potere di falsificazione sistematica. Questo mette la fisica cartesiana più indietro di quella di Galileo che attraverso l’esperimento aveva  trovato ben altre  rigorosità. A Cartesio in effetti, e questo lo avvicina a Bacone, nonostante l’ostentata esaltazione della matematica, manca un rapporto positivo proprio con questa, quel rapporto che avrebbe fatto della sua teoria una teoria scientifica. In generale Cartesio cercò di inserire in questa struttura esplicativa anche tutti gli altri fenomeni fisici conosciuti. In effetti tale   trasformazione fu operata a alcuni grandi continuatori delle teorie cartesiane, come Huyghens, ma a questo punto le teorie cartesiane furono falsificate e progressivamente abbandonate a favore di quella newtoniana.

SEGUE ELENCO DEI TESTI CONSULTATI

ALLEGATO A QUESTI APPUNTI L’AUTORE PREPARO’ ANCHE UNA SERIE DI DOMANDE RELATIVE ALLA MATERIA TRATTATA PER FOCALIZZARE UN PERCORSO

QUESTIONARIO DA UTILIZZARE NELLA PROGRAMMAZIONE DELLA RICERCA E DELLA RIFLESSIONE SULL’EPOCA DELLA PRIMA RIVOLUZIONE SCIENTIFICA

1 – Qual era all’inizio del seicento il problema centrale che verrà che verrà poi affrontato da tutte le nuove filosofie?

2 – Quali furono le tre principali linee culturali che cercarono di risolvere il problema precedente?

3 – Quali furono i due postulati su cui si basava la concezione empirica?

4 –  Che cosa si intende per principio di induzione?

5 – L’Empirismo inglese riuscì a riassorbire il dualismo teoria-esperienza, mondo dei dotti- mondo degli artigiani?

6 – Perché Bacone F. non è da considerarsi il fondatore del metodo scientifico moderno?

7 – Quali furono le critiche portate al principio di induzione ed in che modo si tenta di superare, nel corso del tempo, le contraddizioni in esso implicite?

8 – Perché deducendo correttamente dai “Principi necessari ed Evidenti” medioevali non si arrivava a proposizioni capaci di decidere fra le diverse dispute filosofiche?

9 – Quali furono gli avvenimenti che indirizzarono Galileo verso una utilizzazione nuova e più efficiente della matematica nel metodo scientifico?

10 – Quali furono le conseguenze della utilizzazione sistematica della matematica nella ricerca delle leggi della Natura?

11- Nel quadro del superamento del dualismo pensare-operare, teoria -fatti, ipotesi-esperienza, che ruolo ha giocato l’utilizzazione della matematica? (Far riferimento ai Neoplatonici e neopitagorici, agli architetti e ingegneri e a Galileo).

12 – Che cosa si intende per esperimento? Che differenza passa allora fra esperienza ed esperimento? E’ vero che prima di galileo veniva trascurata l’esperienza? Quali furono i motivi per cui l’esperimento prima di Galileo non era conosciuto?

13 – Galileo utilizzò la matematica in due forme; Quali?

14 – Che cosa significa che la scienza oltre a “descrivere” deve anche “spiegare”?

15 – Galileo riuscì a “spiegare” tutto il suo lavoro fisico? Quali leggi “empiriche” trovate da Galileo rimasero allo stadio di “dato bruto”? Perché?

16 – Che significato attribuiva Galileo al fatto che l’uso della matematica “funzionava” nello studio della Natura? Oggi come la pensiamo?

17 – Le ipotesi “sparate” da Galileo erano ricavate dall’esperienza? Trovavano conferma diretta nell’esperienza? I suoi postulati erano “necessari ed evidenti”?

18 – Qual era allora l’unica condizione a cui dovevano sottostare le sue ipotesi perché potessero essere considerate “scientifiche”?

19 – I dati sperimentali che Galileo forniva, avevano il significato di esperienza nel senso comune?

20 – Quale fu il vantaggio di utilizzare “proposizioni mentali” che, lontane da esperienze ed esperimenti, presentassero però il carattere di proposizioni scientifiche, nella costruzione e sviluppo della scienza fisica?

21 -Che cos’è che suggerisce all’intelletto i “principi”, se non l’esperienza? Da dove derivava a Galileo la garanzia della scientificità del suo metodo e la fiducia nei suoi risultati? (da pensare che i dati empirici e gli strumenti usati a quel tempo erano molto poco precisi!). La realtà così investigata era la realtà “oggettiva”?

22 – In cosa consisteva il famoso Principio di Continuità di Galileo.

DOTT. PIERO PISTOIA

(materia)

ESEMPI DI ANALISI STATISTICA APPLICATA: LA ‘CERCA’ DI UNICORNI: date di nascita e di morte, correlate alle fasi lunari e ad altro; del dott. Piero Pistoia; intermezzi pitture di Gabriella Scarciglia

CURRICULUM DI PIERO PISTOIA

piero-pistoia-curriculumok (#)

luna1

   DATA DI NASCITA E FASI

LUNARI

INTERMEZZI: LE TRE “LUNE” DI GABRIELLA SCARCIGLIA

STATLgraf

PREMESSA GENERALE A QUESTO POST A TAGLIO STATISTICO

Fasi guidate e TROUBLE del ricercatore che ‘tenta di guardare’ all’interno di un oggetto complesso, per ‘sbrogliare’ la matassa di un migliaio di dati relativi alle date di nascita e di morte in Val di Cecina, da classificare secondo vari criteri, onde trovare correlazioni, per es., con le fasi lunari, i sette giorni della settimana, i dodici mesi dell’anno, maschi e femmine…., attraverso ipotesi di lavoro successive.

LUNA_PREMESSA0001

Seguendo i percorsi tracciati nel link precedente, consideriamo, al termine del processo di ricerca, due soli gruppi di dati, il primo dei quali (CAMPIONE n.1) rappresenta le date di nascita  di persone decedute fra maggio 1976 e marzo 1992 (822 casi), considerando solo quelle comprese fra il 1880 ed il 1925 (risultate 741), venendo così a trascurare 81 casi. Questi dati sono stati ripresi dal prezioso Registro dei Defunti della Parrocchia di S. Giovanni Battista di Pomarance (Pi), messo a disposizione dell’autore dall’allora proposto Don Piero Burlacchini, che si ringrazia per la gentile preziosa collaborazione.

Il secondo Gruppo (CAMPIONE n. 2)  è costituito da 444 date di nascita (11980-1991) riprese dal Registro delle Vaccinazioni dell’USL della Val di Cecina. Un ringraziamento particolare va alla Signora Fulvia Gronchi Borghetti, ostetrica,  per avere ricopiato direttamente a mano dal detto Registro le date di nascita al tempo attuali (444 casi).

Ringraziamo altresì l’amico prof. Vasco Pineschi  per aver riportato in ‘bella copia’ i grafici del risultato.

I diversi gruppi di date scelti in successione per questa ricerca  vengono via via sottoposti a vari programmi di lettura e classificazione dati, in Qbasic (LUNFRE), scritti da Piero Pistoia, simili, per es., al contenuto del link  seguente:

NASCO2

Vi facciamo vedere, per esempio, anche il risultato ottenuto da uno di questi programmi, da sottoporre ad una analisi statistica successiva in cerca di correlazioni.

 

BREVE COMMENTO AL PROGRAMMA DATI1.BAS

Di tratta di una routine in QB per immettere contemporaneamente in tre file i dati relativi a nascita, morte , sesso, età e per richiamarli.

Due di questi file sono di tipo random ed uno è sequenziale. I tre file vengono aperti all’inizio e chiusi alla fine della fase di immissione o della fase richiamo dati. Per i file random è necessario specificare anche il nome ed il tipo delle variabile immesse.

DT0.DT → file random che contiene il giorno-mese-anno di morte, l’età, il sesso, il giorno-mese-anno di nascita. E un file BINARIO

ET.DT → file random che contiene l’anno di morte e l’età. E’ un file BINARIO.

TE.DT → file sequenziale che contiene l’anno di morte e l’età. E’ un file ASCII.

In tal modo di due file ET.DT e TE.DT contengono gli stessi dati, solo che uno è scritto in BINARIO e l’altro in ASCII.

E possibile aggiungere a questi due file anche il SESSO per ogni età.

ALGORITMO PER IL CALCOLO DELLA ETA’

(Subroutine 100 del programma accessibile con il link al termine del commento)

L’età viene calcolata prendendo i GIORNI GIULIANI (Subroutine 1000, vedere programma nel linK sotto), relativi ad ogni data di nascita e di morte, sottraendoli per ottenere i GIORNI DI DURATA DELLA VITA.

Conoscendo l’anno di nascita ed i giorni di vita, l’algoritmo procede secondo le fasi seguenti:

1 – Aumento di 1 l’anno di nascita e controllo se è BISESTILE  (vedere NOTA) con una ulteriore subroutine.

2 – Sottraggo in successione dai giorni di vita, 365 (o 366 se l’anno in oggetto risulta bisestile) e per ogni sottrazione sommo 1 in un contatore.

3 – Ad ogni sottrazione controllo se il numero dei giorni di vita restanti è inferiore a 365 (o 366), giorni dell’anno su cui stiamo lavorando. Finché tale numero risulta maggiore, si torna al punto 1, continuando a sommare 1 all’anno di nascita, passando quindi al punto 2 e 3.

4 – Quando si esce (numero di giorni di vita restanti (< di 365 o 366), nel contatore c’è un numero senza decimali (intero) equivalente agli ANNI DI VITA o ETA’.

5 – I giorni di vita che restano rappresentano la frazione di anno, che posso calcolare dividendo questo numero di giorni di vita per 365 (o 3666, se l’ultimo anno del conto è bisestile).

6 – Sommo infine alla frazione di anno, il numero di anni di vita, ottenendo l’ETA’ cercata, in anni e frazioni di anno.

NOTA: anni bisestili

 Anno Tropico -> è l’intervallo di tempo che trascorre fra due successivi passaggi del sole, considerato che si muova a velocità angolare costante, all’equinozio di primavera. L’anno tropico, che è poi l’anno del senso comune, è più breve dell’anno siderale (perché l’equinozio (gamma) si muove incontro al sole ed è più breve del tempo che il sole impiega a percorrere un arco di 50”. 26
360° -> 1 296 000″
Anno Siderale -> è il periodo di rivoluzione della terra attorno al sole ed è pari a 365.256360 giorni solari medi.
L’Anno Tropico = Anno Siderale * (1 – 50”.27 / 1 296 000″) =365.24220 giorni solari medi
L’Anno Tropico presenta alcuni inconvenienti per le frazioni di giorno di cui bisogna tener conto.
Si è definito così l’anno civile che inizia sempre col principio esatto di un giorno medio ed è composto di un numero intero di giorni medi. Si può così ottenere una buona approssimazione, per l’anno civile all’anno tropico, considerando il civile pari a 365 e un 1/4 giorni solari medi.
Il problema del calendario si risolve facendo uguale a 365 giorni la durata dell’anno civile ed inserendo ogni 4 anni un anno bisestile di 366 giorno.
Ma rispetto all’anno tropico ogni 400 anni si ha:
365 1/4 * 400 -> 365*4000 + 100 giorni medi , anziché:
365.24222 * 400 -> 365 * 400 + 96.88 giorni medi.
Quindi ogni 400 anni si devono sopprimere 3 giorni, se non si vuole che la data del 21 Marzo anticipi.superi l’equinozio di primavera.
Così nel 1582 si dovettero sopprimere 10 giorni (il giorno dopo il 4 ottobre 1582 fu così il 15 invece del 5).
D’allora in poi gli anni indicati da un numero terminante con 2 zero (che prima erano tutti bisestili) fossero bisestili solo se tale numero fosse anche divisibile per 400, effettuando così la soppressione di 3 giorni ogni 400 anni.

Il precedente commento è relativo al programma in basic di Piero Pistoia, accessibile con il link:

NASCITA_MORTE_ETA_DATI1

 

Da continuare…..

STATL1

OLYMPUS DIGITAL CAMERA
STATL12


OLYMPUS DIGITAL CAMERA
STATL13

PRIMA LUNA

marmel0004

STATL2

STATL21

STATL22i

STATL23

SECONDA LUNA

OLYMPUS DIGITAL CAMERA

STATL31i

STATL32

STATL33i

STATL34

TERZA LUNA
goz2

STATL35

NOTA PREMESSA